Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog


- Equinoctial Regions of America - 10/104 -

storm, and left to the guidance of the currents, reached the Orkneys. This last example is the more worthy of attention, as it proves at the same time how, at a period when the art of navigation was yet in its infancy, the motion of the waters of the ocean may have contributed to disseminate the different races of men over the face of the globe.

In reflecting on the causes of the Atlantic currents, we find that they are much more numerous than is generally believed; for the waters of the sea may be put in motion by an external impulse, by difference of heat and saltness, by the periodical melting of the polar ice, or by the inequality of evaporation, in different latitudes. Sometimes several of these causes concur to one and the same effect, and sometimes they produce several contrary effects. Winds that are light, but which, like the trade-winds, are continually acting on the whole of a zone, cause a real movement of transition, which we do not observe in the heaviest tempests, because these last are circumscribed within a small space. When, in a great mass of water, the particles at the surface acquire a different specific gravity, a superficial current is formed, which takes its direction towards the point where the water is coldest, or where it is most saturated with muriate of soda, sulphate of lime, and muriate or sulphate of magnesia. In the seas of the tropics we find, that at great depths the thermometer marks 7 or 8 centesimal degrees. Such is the result of the numerous experiments of commodore Ellis and of M. Peron. The temperature of the air in those latitudes being never below 19 or 20 degrees, it is not at the surface that the waters can have acquired a degree of cold so near the point of congelation, and of the maximum of the density of water. The existence of this cold stratum in the low latitudes is an evident proof of the existence of an under-current, which runs from the poles towards the equator: it also proves that the saline substances which alter the specific gravity of the water, are distributed in the ocean, so as not to annihilate the effect produced by the differences of temperature.

Considering the velocity of the molecules, which, on account of the rotatory motion of the globe, vary with the parallels, we may be tempted to admit that every current, in the direction from south to north, tends at the same time eastward, while the waters which run from the pole towards the equator, have a tendency to deviate westward. We may also be led to think that these tendencies diminish to a certain point the speed of the tropical current, in the same manner as they change the direction of the polar current, which in July and August, is regularly perceived during the melting of the ice, on the parallel of the bank of Newfoundland, and farther north. Very old nautical observations, which I have had occasion to confirm by comparing the longitude given by the chronometer with that which the pilots obtained by their reckoning, are, however, contrary to these theoretical ideas. In both hemispheres, the polar currents, when they are perceived, decline a little to the east; and it would seem that the cause of this phenomenon should be sought in the constancy of the westerly winds which prevail in the high latitudes. Besides, the particles of water do not move with the same rapidity as the particles of air; and the currents of the ocean, which we consider as most rapid, have only a swiftness of eight or nine feet a second; it is consequently very probable, that the water, in passing through different parallels, gradually acquires a velocity correspondent to those parallels, and that the rotation of the earth does not change the direction of the currents.

The variable pressure on the surface of the sea, caused by the changes in the weight of the air, is another cause of motion which deserves particular attention. It is well known, that the barometric variations do not in general take place at the same moment in two distant points, which are on the same level. If in one of these points the barometer stands a few lines lower than in the other, the water will rise where it finds the least pressure of air, and this local intumescence will continue, till, from the effect of the wind, the equilibrium of the air is restored. M. Vaucher thinks that the tides in the lake of Geneva, known by the name of the seiches, arise from the same cause. We know not whether it be the same, when the movement of progression, which must not be confounded with the oscillation of the waves, is the effect of an external impulse. M. de Fleurieu, in his narrative of the voyage of the Isis, cites several facts, which render it probable that the sea is not so still at the bottom as naturalists generally suppose. Without entering here into a discussion of this question, we shall only observe that, if the external impulse is constant in its action, like that of the trade-winds, the friction of the particles of water on each other must necessarily propagate the motion of the surface of the ocean even to the lower strata; and in fact this propagation in the Gulf-stream has long been admitted by navigators, who think they discover the effects in the great depth of the sea wherever it is traversed by the current of Florida, even amidst the sand-banks which surround the northern coasts of the United States. This immense river of hot waters, after a course of fifty days, from the 24th to the 45th degree of latitude, or 450 leagues, does not lose, amidst the rigours of winter in the temperate zone, more than 3 or 4 degrees of the temperature it had under the tropics. The greatness of the mass, and the small conductibility of water for heat, prevent a more speedy refrigeration. If, therefore, the Gulf-stream has dug a channel at the bottom of the Atlantic ocean, and if its waters are in motion to considerable depths, they must also in their inferior strata keep up a lower temperature than that observed in the same parallel, in a part of the sea which has neither currents nor deep shoals. These questions can be cleared up only by direct experiments, made by thermometrical soundings.

Sir Erasmus Gower remarks, that, in the passage from England to the Canary islands, the current, which carries vessels towards the south-east, begins at the 39th degree of latitude. During our voyage from Corunna to the coast of South America, the effect of this motion of the waters was perceived farther north. From the 37th to the 30th degree, the deviation was very unequal; the daily average effect was 12 miles, that is, our sloop drove towards the east 75 miles in six days. In crossing the parallel of the straits of Gibraltar, at a distance of 140 leagues, we had occasion to observe, that in those latitudes the maximum of the rapidity does not correspond with the mouth of the straits, but with a more northerly point, which lies on the prolongation of a line passing through the strait and Cape St. Vincent. This line is parallel to the direction which the waters follow from the Azores to Cape Cantin. We should moreover observe (and this fact is not uninteresting to those who examine the nature of fluids), that in this part of the retrograde current, on a breadth of 120 or 140 leagues, the whole mass of water has not the same rapidity, nor does it follow precisely the same direction. When the sea is perfectly calm, there appears at the surface narrow stripes, like small rivulets, in which the waters run with a murmur very sensible to the ear of an experienced pilot. On the 13th of June, in 34 degrees 36 minutes north latitude, we found ourselves in the midst of a great number of these beds of currents. We took their direction with the compass, and some ran north-east, others east-north-east, though the general movement of the ocean, indicated by comparing the reckoning with the chronometrical longitude, continued to be south-east. It is very common to see a mass of motionless waters crossed by threads of water, which run in different directions, and we may daily observe this phenomenon on the surface of lakes; but it is much less frequent to find partial movements, impressed by local causes on small portions of waters in the midst of an oceanic river, which occupies an immense space, and which moves, though slowly, in a constant direction. In the conflict of currents, as in the oscillation of the waves, our imagination is struck by those movements which seem to penetrate each other, and by which the ocean is continually agitated.

We passed Cape St. Vincent, which is of basaltic formation, at the distance of more than eighty leagues. It is not distinctly seen at a greater distance than 15 leagues, but the granitic mountain called the Foya de Monchique, situated near the Cape, is perceptible, as pilots allege, at the distance of 26 leagues. If this assertion be exact, the Foya is 700 toises (1363 metres), and consequently 116 toises (225 metres) higher than Vesuvius.

From Corunna to the 36th degree of latitude we had scarcely seen any organic being, excepting sea-swallows and a few dolphins. We looked in vain for sea-weeds (fuci) and mollusca, when on the 11th of June we were struck with a curious sight which afterwards was frequently renewed in the southern ocean. We entered on a zone where the whole sea was covered with a prodigious quantity of medusas. The vessel was almost becalmed, but the mollusca were borne towards the south-east, with a rapidity four times greater than the current. Their passage lasted near three quarters of an hour. We then perceived but a few scattered individuals, following the crowd at a distance as if tired with their journey. Do these animals come from the bottom of the sea, which is perhaps in these latitudes some thousand fathoms deep? or do they make distant voyages in shoals? We know that the mollusca haunt banks; and if the eight rocks, near the surface, which captain Vobonne mentions having seen in 1732, to the north of Porto Santo, really exist, we may suppose that this innumerable quantity of medusas had been thence detached; for we were but 28 leagues from the reef. We found, beside the Medusa aurita of Baster, and the Medusa pelagica of Bosc with eight tentacula (Pelagia denticulata, Peron), a third species which resembles the Medusa hysocella, and which Vandelli found at the mouth of the Tagus. It is known by its brownish-yellow colour, and by its tentacula, which are longer than the body. Several of these sea-nettles were four inches in diameter: their reflection was almost metallic: their changeable colours of violet and purple formed an agreeable contrast with the azure tint of the ocean.

In the midst of these medusas M. Bonpland observed bundles of Dagysa notata, a mollusc of a singular construction, which Sir Joseph Banks first discovered. These are small gelatinous bags, transparent, cylindrical, sometimes polygonal, thirteen lines long and two or three in diameter. These bags are open at both ends. In one of these openings, we observed a hyaline bladder, marked with a yellow spot. The cylinders lie longitudinally, one against another, like the cells of a bee-hive, and form chaplets from six to eight inches in length. I tried the galvanic electricity on these mollusca, but it produced no contraction. It appears that the genus dagysa, formed at the time of Cook's first voyage, belongs to the salpas (biphores of Bruguiere), to which M. Cuvier joins the Thalia of Brown, and the Tethys vagina of Tilesius. The salpas journey also by groups, joining in chaplets, as we have observed of the dagysa.

On the morning of the 13th of June, in 34 degrees 33 minutes latitude, we saw large masses of this last mollusc in its passage, the sea being perfectly calm. We observed during the night, that, of three species of medusas which we collected, none yielded any light but at the moment of a very slight shock. This property does not belong exclusively to the Medusa noctiluca, which Forskael has described in his Fauna Aegyptiaca, and which Gmelin has applied to the Medusa pelagica of Loefling, notwithstanding its red tentacula, and the brownish tuberosities of its body. If we place a very

Equinoctial Regions of America - 10/104

Previous Page     Next Page

  1    5    6    7    8    9   10   11   12   13   14   15   20   30   40   50   60   70   80   90  100  104 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything