Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog


- Equinoctial Regions of America - 20/104 -

When the Sugar-loaf (el Piton) is covered with snow, as it is in the beginning of winter, the steepness of its declivity may be very dangerous to the traveller. M. Le Gros showed us the place where captain Baudin was nearly killed when he visited the Peak of Teneriffe. That officer had the courage to undertake, in company with the naturalists Advenier, Mauger, and Riedle, an excursion to the top of the volcano about the end of December, 1797. Having reached half the height of the cone, he fell, and rolled down as far as the small plain of Rambleta; happily a heap of lava, covered with snow, hindered him from rolling farther with accelerated velocity. I have been told, that in Switzerland a traveller was suffocated by rolling down the declivity of the Col de Balme, over the compact turf of the Alps.

When we gained the summit of the Piton, we were surprised to find scarcely room enough to seat ourselves conveniently. We were stopped by a small circular wall of porphyritic lava, with a base of pitchstone, which concealed from us the view of the crater.* (* Called La Caldera, or the caldron of the peak, a denomination which recalls to mind the Oules of the Pyrenees.) The west wind blew with such violence that we could scarcely stand. It was eight in the morning, and we suffered severely from the cold, though the thermometer kept a little above freezing point. For a long time we had been accustomed to a very high temperature, and the dry wind increased the feeling of cold, because it carried off every moment the small atmosphere of warm and humid air, which was formed around us from the effect of cutaneous perspiration.

The brink of the crater of the peak bears no resemblance to those of most of the other volcanoes which I have visited: for instance, the craters of Vesuvius, Jorullo, and Pichincha. In these the Piton preserves its conic figure to the very summit: the whole of their declivity is inclined the same number of degrees, and uniformly covered with a layer of pumice-stone very minutely divided; when we reach the top of these volcanoes, nothing obstructs the view of the bottom of the crater. The peaks of Teneriffe and Cotopaxi, on the contrary, are of very different construction. At their summit a circular wall surrounds the crater; which wall, at a distance, has the appearance of a small cylinder placed on a truncated cone. On Cotopaxi this peculiar construction is visible to the naked eye at more than 2000 toises distance; and no person has ever reached the crater of that volcano. On the peak of Teneriffe, the wall, which surrounds the crater like a parapet, is so high, that it would be impossible to reach the Caldera, if, on the eastern side, there was not a breach, which seems to have been the effect of a flowing of very old lava. We descended through this breach toward the bottom of the funnel, the figure of which is elliptic. Its greater axis has a direction from north-west to south-east, nearly north 35 degrees west. The greatest breadth of the mouth appeared to us to be 300 feet, the smallest 200 feet, which numbers agree very nearly with the measurement of MM. Verguin, Varela, and Borda.

It is easy to conceive, that the size of a crater does not depend solely on the height and mass of the mountain, of which it forms the principal air-vent. This opening is indeed seldom in direct ratio with the intensity of the volcanic fire, or with the activity of the volcano. At Vesuvius, which is but a hill compared with the Peak of Teneriffe, the diameter of the crater is five times greater. When we reflect, that very lofty volcanoes throw out less matter from their summits than from lateral openings, we should be led to think, that the lower the volcanoes, their force and activity being the same, the more considerable ought to be their craters. In fact, there are immense volcanoes in the Andes, which have but very small openings; and we might establish as a geological principle, that the most colossal mountains have craters of little extent at the summits, if the Cordilleras did not present many instances to the contrary.* (* The great volcanoes of Cotopaxi and Rucupichincha have craters, the diameters of which, according to my measurements, exceed 400 and 700 toises.) I shall have occasion, in the progress of this work, to cite a number of facts, which will throw some light on what may be called the external structure of volcanoes. This structure is as varied as the volcanic phenomena themselves; and in order to raise ourselves to geological conceptions worthy of the greatness of nature, we must set aside the idea that all volcanoes are formed after the model of Vesuvius, Stromboli, and Etna.

The external edges of the Caldera are almost perpendicular. Their appearance is somewhat like the Somma, seen from the Atrio dei Cavalli. We descended to the bottom of the crater on a train of broken lava, from the eastern breach of the enclosure. The heat was perceptible only in a few crevices, which gave vent to aqueous vapours with a peculiar buzzing noise. Some of these funnels or crevices are on the outside of the enclosure, on the external brink of the parapet that surrounds the crater. We plunged the thermometer into them, and saw it rise rapidly to 68 and 75 degrees. It no doubt indicated a higher temperature, but we could not observe the instrument till we had drawn it up, lest we should burn our hands. M. Cordier found several crevices, the heat of which was that of boiling water. It might be thought that these vapours, which are emitted in gusts, contain muriatic or sulphurous acid; but when condensed, they have no particular taste; and experiments, which have been made with re-agents, prove that the chimneys of the peak exhale only pure water. This phenomenon, analogous to that which I observed in the crater of Jorullo, deserves the more attention, as muriatic acid abounds in the greater part of volcanoes, and as M. Vauquelin has discovered it even in the porphyritic lavas of Sarcouy in Auvergne.

I sketched on the spot a view of the interior edge of the crater, as it presented itself in the descent by the eastern break. Nothing is more striking than the manner in which these strata of lava are piled on one another, exhibiting the sinuosities of the calcareous rock of the higher Alps. These enormous ledges, sometimes horizontal, sometimes inclined and undulating, are indicative of the ancient fluidity of the whole mass, and of the combination of several deranging causes, which have determined the direction of each flow. The top of the circular wall exhibits those curious ramifications which we find in coke. The northern edge is most elevated. Towards the south-west the enclosure is considerably sunk and an enormous mass of scorious lava seems glued to the extremity of the brink. On the west the rock is perforated; and a large opening gives a view of the horizon of the sea. The force of the elastic vapours perhaps formed this natural aperture, at the time of some inundation of lava thrown out from the crater.

The inside of this funnel indicates a volcano, which for thousands of years has vomited no fire but from its sides. This conclusion is not founded on the absence of great openings, which might be expected in the bottom of the Caldera. Those whose experience is founded on personal observation, know that several volcanoes, in the intervals of an eruption, appear filled up, and almost extinguished; but that in these same mountains, the crater of the volcano exhibits layers of scoriae, rough, sonorous, and shining. We observe hillocks and intumescences caused by the action of the elastic vapours, cones of broken scoriae and ashes which cover the funnels. None of these phenomena characterise the crater of the peak of Teneriffe; its bottom is not in the state which ensues at the close of an eruption. From the lapse of time, and the action of the vapours, the inside walls are detached, and have covered the basin with great blocks of lithoid lavas.

The bottom of the Caldera is reached without danger. In a volcano, the activity of which is principally directed towards the summit, such as Vesuvius, the depth of the crater varies before and after each eruption; but at the peak of Teneriffe the depth appears to have remained unchanged for a long time. Eden, in 1715, estimated it at 115 feet; Cordier, in 1803, at 110 feet. Judging by mere inspection, I should have thought the funnel of still less depth. Its present state is that of a solfatara; and it is rather an object of curious investigation, than of imposing aspect. The majesty of the site consists in its elevation above the level of the sea, in the profound solitude of these lofty regions, and in the immense space over which the eye ranges from the summit of the mountain.

The wall of compact lava, forming the enclosure of the Caldera, is snow-white at its surface. The same colour prevails in the inside of the Solfatara of Puzzuoli. When we break these lavas, which might be taken at some distance for calcareous stone, we find in them a blackish brown nucleus. Porphyry, with basis of pitch-stone, is whitened externally by the slow action of the vapours of sulphurous acid gas. These vapours rise in abundance; and what is rather remarkable, through crevices which seem to have no communication with the apertures that emit aqueous vapours. We may be convinced of the presence of the sulphurous acid, by examining the fine crystals of sulphur, which are everywhere found in the crevices of the lava. This acid, combined with the water with which the soil is impregnated, is transformed into sulphuric acid by contact with the oxygen of the atmosphere. In general, the humidity in the crater of the peak is more to be feared than the heat; and they who seat themselves for a while on the ground find their clothes corroded. The porphyritic lavas are affected by the action of the sulphuric acid: the alumine, magnesia, soda, and metallic oxides gradually disappear; and often nothing remains but the silex, which unites in mammillary plates, like opal. These siliceous concretions,* (* Opalartiger kieselsinter. The siliceous gurh of the volcanoes of the Isle of France contains, according to Klaproth, 0.72 silex, and 0.21 water; and thus comes near to opal, which Karsten considers as a hydrated silex.) which M. Cordier first made known, are similar to those found in the isle of Ischia, in the extinguished volcanoes of Santa Fiora, and in the Solfatara of Puzzuoli. It is not easy to form an idea of the origin of these incrustations. The aqueous vapours, discharged through great spiracles, do not contain alkali in solution, like the waters of the Geyser, in Iceland. Perhaps the soda contained in the lavas of the peak acts an important part in the formation of these deposits of silex. There may exist in the crater small crevices, the vapours of which are not of the same nature as those on which travellers, whose attention has been directed simultaneously to a great number of objects, have made experiments.

Seated on the northern brink of the crater, I dug a hole of some inches in depth; and the thermometer placed in this hole rose rapidly to 42 degrees. Hence we may conclude what must be the heat in this solfatara at the depth of thirty or forty fathoms. The sulphur reduced into vapour is condensed into fine crystals, which however are not equal in size to those M. Dolomieu brought from Sicily. They are semi-diaphanous octahedrons, very brilliant on the surface, and of a conchoidal fracture. These masses, which will one day perhaps be objects of commerce, are constantly bedewed with sulphurous acid. I had the imprudence to wrap up a few, in order to preserve them, but I soon discovered that the acid had consumed not only the paper which contained them, but a part also of my mineralogical journal. The heat of the vapours, which issue from the crevices of the caldera, is not sufficiently great to combine the sulphur while in a state of minute division, with the oxygen of the atmospheric air; and after the experiment I have just cited on the temperature of the soil, we may presume that the sulphurous acid is formed at a certain depth,* in cavities to which the

Equinoctial Regions of America - 20/104

Previous Page     Next Page

  1   10   15   16   17   18   19   20   21   22   23   24   25   30   40   50   60   70   80   90  100  104 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything