Schulers Books Online

books - games - software - wallpaper - everything

Bride.Ru

Books Menu

Home
Author Catalog
Title Catalog
Sectioned Catalog

 

- The Fairy-Land of Science - 10/30 -


always sets in from the sea to the land.

When night comes, however, then the land loses its heat very quickly, because it has not stored it up and the land-air grows cold; but the sea, which has been hoarding the sun-waves down in its depths, now gives them up to the atmosphere above it, and the sea-air becomes warm and rises. For this reason it is now the turn of the cold air from the land to spread over the sea, and you have a land-breeze blowing off the shore.

Again, the reason why there are such steady winds, called the trade winds, blowing towards the equator, is that the sun is very hot at the equator, and hot air is always rising there and making room for colder air to rush in. We have not time to travel farther with the moving air, though its journeys are extremely interesting; but if, when you read about the trade and other winds, you will always picture to yourselves warm air made light by the heat rising up into space and cold air expanding and rushing in to fill its place, I can promise you that you will not find the study of aerial currents so dry as many people imagine it to be.

We are now able to form some picture of our aerial ocean. We can imagine the active atoms of oxygen floating in the sluggish nitrogen, and being used up in every candle-flame, gas-jet and fire, and in the breath of all living beings; and coming out again tied fast to atoms of carbon and making carbonic acid. Then we can turn to trees and plants, and see them tearing these two apart again, holding the carbon fast and sending the invisible atoms of oxygen bounding back again into the air, ready to recommence work. We can picture all these air-atoms, whether of oxygen or nitrogen, packed close together on the surface of the earth, and lying gradually farther and farther apart, as they have less weight above them, till they become so scattered that we can only detect them as they rub against the flying meteors which flash into light. We can feel this great weight of air pressing the limpet on to the rock; and we can see it pressing up the mercury in the barometer and so enabling us to measure its weight. Lastly, every breath of wind that blows past us tells us how this aerial ocean is always moving to and fro on the face of the earth; and if we think for a moment how much bad air and bad matter it must carry away, as it goes from crowded cities to be purified in the country, we can see how, in even this one way alone, it is a great blessing to us.

Yet even now we have not mentioned many of the beauties of our atmosphere. It is the tiny particles floating in the air which scatter the light of the sun so that it spreads over the whole country and into shady places. The sun's rays always travel straight forward; and in the moon, where there is no atmosphere, there is no light anywhere except just where the rays fall. But on our earth the sun-waves hit against the myriads of particles in the air and glide off them into the corners of the room or the recesses of a shady lane, and so we have light spread before us wherever we walk in the daytime, instead of those deep black shadows which we can see through a telescope on the face of the moon.

Again, it is electricity playing in the air-atoms which gives us the beautiful lightning and the grand aurora borealis, and even the twinkling of the starts is produced entirely by minute changes in the air. If it were not for our aerial ocean, the stars would stare at us sternly, instead of smiling with the pleasant twinkle-twinkle which we have all learned to love as little children.

All these questions, however, we must leave for the present; only I hope you will be eager to read about them wherever you can, and open your eyes to learn their secrets. For the present we must be content if we can even picture this wonderful ocean of gas spread round our earth, and some of the work it does for us.

We said in the last lecture that without the sunbeams the earth would be cold, dark, and frost-ridden. With sunbeams, but without air, it would indeed have burning heat, side by side with darkness and ice, but it could have no soft light. our planet might look beautiful to others, as the moon does to us, but it could have comparatively few beauties of its own. With the sunbeams and the air, we see it has much to make it beautiful. But a third worker is wanted before our planet can revel in activity and life. This worker is water; and in the next lecture we shall learn something of the beauty and the usefulness of the "drops of water" on their travels.

Week 10

LECTURE IV. A DROP OF WATER ON ITS TRAVELS

We are going to spend an hour to-day in following a drop of water on its travels. If I dip my finger in this basin of water and lift it up again, I bring with it a small glistening drop out of the body of water below, and hold it before you. Tell me, have you any idea where this drop has been? what changes it has undergone, and what work it has been doing during all the long ages that water has lain on the face of the earth? It is a drop now, but it was not so before I lifted it out of the basin; then it was part of a sheet of water, and will be so again if I let it fall. Again, if I were to put this basin on the stove till all the water had boiled away, where would my drop be then? Where would it go? What forms will it take before it reappears in the rain-cloud, the river, or the sparkling dew?

These are questions we are going to try to answer to-day; and first, before we can in the least understand how water travels, we must call to mind what we have learnt about the sunbeams and the air. We must have clearly pictured in our imagination those countless sun-waves which are for ever crossing space, and especially those larger and slower undulations, the dark heat- waves; for it is these, you will remember, which force the air- atoms apart and make the air light, and it is also these which are most busy in sending water on its travels. But not these alone. The sun-waves might shake the water-drops as much as they liked and turn them into invisible vapour, but they could not carry them over the earth if it were not for the winds and currents of that aerial ocean which bears the vapour on its bosom, and wafts it to different regions of the world.

Let us try to understand how these two invisible workers, the sun-waves and the air, deal with the drops of water. I have here a kettle (Fig. 18, p. 76) boiling over a spirit-lamp, and I want you to follow minutely what is going on in it. First, in the flame of the lamp, atoms of the spirit drawn up from below are clashing with the oxygen-atoms in the air. This, as you know, causes heat-waves and light-waves to move rapidly all round the lamp. The light-waves cannot pass through the kettle, but the heat-waves can, and as they enter the water inside they agitate it violently. Quicker, and still more quickly, the particles of water near the bottom of the kettle move to and fro and are shaken apart; and as they become light they rise through the colder water letting another layer come down to be heated in its turn. The motion grows more and more violent, making the water hotter and hotter, till at last the particles of which it is composed fly asunder, and escape as invisible vapour. If this kettle were transparent you would not see any steam above the water, because it is in the form of an invisible gas. But as the steam comes out of the mouth of the kettle you see a cloud. Why is this? Because the vapour is chilled by coming out into the cold air, and its particles are drawn together again into tiny, tiny drops of water, to which Dr. Tyndall has given the suggestive name of water-dust. If you hold a plate over the steam you can catch these tiny drops, though they will run into one another almost as you are catching them.

The clouds you see floating in the sky are made of exactly the same kind of water-dust as the cloud from the kettle, and I wish to show you that this is also really the same as the invisible steam within the kettle. I will do so by an experiment suggested by Dr. Tyndall. Here is another spirit-lamp, which I will hold under the cloud of steam - see! the cloud disappears! As soon as the water-dust is heated the heat-waves scatter it again into invisible particles, which float away into the room. Even without the spirit-lamp, you can convince yourself that water-vapour may be invisible; for close to the mouth of the kettle you will see a short blank space before the cloud begins. In this space there must be steam, but it is still so hot that you cannot see it; and this proves that heat-waves can so shake water apart as to carry it away invisibly right before your eyes.

Now, although we never see any water travelling from our earth up into the skies, we know that it goes there, for it comes down again in rain, and so it must go up invisibly. But where does the heat come from which makes this water invisible? Not from below, as in the case of the kettle, but from above, pouring down from the sun. Wherever the sun-waves touch the rivers, ponds, lakes, seas, or fields of ice and snow upon our earth, they carry off invisible water-vapour. They dart down through the top layers of the water, and shake the water-particles forcibly apart; and in this case the drops fly asunder more easily and before they are so hot, because they are not kept down by a great weight of water above, as in the kettle, but find plenty of room to spread themselves out in the gaps between the air-atoms of the atmosphere.

Can you imagine these water-particles, just above any pond or lake, rising up and getting entangled among the air-atoms? They are very light, much lighter than the atmosphere; and so, when a great many of them are spread about in the air which lies just over the pond, they make it much lighter than the layer of air above, and so help it to rise, while the heavier layer of air comes down ready to take up more vapour.

In this way the sun-waves and the air carry off water everyday, and all day long, from the top of lakes, rivers, pools, springs, and seas, and even from the surface of ice and snow. Without any fuss or noise or sign of any kind, the water of our earth is being drawn up invisibly into the sky.

It has been calculated that in the Indian Ocean three-quarters of an inch of water is carried off from the surface of the sea in one day and night; so that as much as 22 feet, or a depth of water about twice the height of an ordinary room, is silently and invisibly lifted up from the whole surface of the ocean in one year. It is true this is one of the hottest parts of the earth, where the sun-waves are most active; but even in our own country many feet of water are drawn up in the summer-time.

What, then, becomes of all this water? Let us follow it as it struggles upwards to the sky. We see it in our imagination first


The Fairy-Land of Science - 10/30

Previous Page     Next Page

  1    5    6    7    8    9   10   11   12   13   14   15   20   30 

Schulers Books Home



 Games Menu

Home
Balls
Battleship
Buzzy
Dice Poker
Memory
Mine
Peg
Poker
Tetris
Tic Tac Toe

Google
 
Web schulers.com
 

Schulers Books Online

books - games - software - wallpaper - everything