Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog


- The Fairy-Land of Science - 3/30 -

But if you hold a wet handkerchief before the fire and see the damp rising out of it, then you have some real idea how moisture may be drawn up by heat from the earth.

A little foreign niece of mine, only four years old, who could scarcely speak English plainly, was standing one morning near the bedroom window and she noticed the damp trickling down the window-pane. "Auntie," she said, "what for it rain inside?" It was quite useless to explain to her in words, how our breath had condensed into drops of water upon the cold glass; but I wiped the pane clear, and breathed on it several times. When new drops were formed, I said, "Cissy and auntie have done like this all night in the room." She nodded her little head and amused herself for a long time breathing on the window-pane and watching the tiny drops; and about a month later, when we were travelling back to Italy, I saw her following the drops on the carriage window with her little finger, and heard her say quietly to herself, "Cissy and auntie made you." Had not even this little child some real picture in her mind of invisible water coming from her mouth, and making drops upon the window-pane?

Then again, you must learn something of the language of science. If you travel in a country with no knowledge of its language, you can learn very little about it: and in the same way if you are to go to books to find answers to your questions, you must know something of the language they speak. You need not learn hard scientific names, for the best books have the fewest of these, but you must really understand what is meant by ordinary words.

For example, how few people can really explain the difference between a solid, such as the wood of the table; a liquid, as water; and a gas, such as I can let off from this gas-jet by turning the tap. And yet any child can make a picture of this in his mind if only it has been properly put before him.

All matter in the world is made up of minute parts or particles; in a solid these particles are locked together so tightly that you must tear them forcibly apart if you with to alter the shape of the solid piece. If I break or bend this wood I have to force the particles to move round each other, and I have great difficulty doing it. But in a liquid, though the particles are still held together, they do not cling so tightly, but are able to roll or glide round each other, so that when you pour water out of a cup on to a table, it loses its cuplike shape and spreads itself out flat. Lastly, in a gas the particles are no longer held together at all, but they try to fly away from each other; and unless you shut a gas in tightly and safely, it will soon have spread all over the room.

A solid, therefore, will retain the same bulk and shape unless you forcibly alter it; a liquid will retain the same bulk, but no the same shape if it be left free; a gas will not retain either the same bulk or the same shape, but will spread over as large a space as it can find wherever it can penetrate. Such simple things as these you must learn from books and by experiment.

Then you must understand what is meant by chemical attraction; and though I can explain this roughly here, you will have to make many interesting experiments before you will really learn to know this wonderful fairy power. If I dissolve sugar in water, though it disappears it still remains sugar, and does not join itself to the water. I have only to let the cup stand till the water dries, and the sugar will remain at the bottom. There has been no chemical attraction here.

But now I will put something else in water which will call up the fairy power. Here is a little piece of the metal potassium, one of the simple substances of the earth; that is to say, we cannot split it up into other substances, wherever we find it, it is always the same. Now if I put this piece of potassium on the water it does not disappear quietly like the sugar. See how it rolls round and round, fizzing violently with a blue flame burning round it, and at last goes off with a pop.

What has been happening here?

You must first know that water is made of two substances, hydrogen and oxygen, and these are not merely held together, but are joined to completely that they have lost themselves and have become water; and each atom of water is made of two atoms of hydrogen and one of oxygen.

Now the metal potassium is devotedly fond of oxygen, and the moment I threw it on the water it called the fairy "chemical attraction' to help it, and dragged the atoms of oxygen out of the water and joined them to itself. In doing this it also caught part of the hydrogen, but only half, and so the rest was left out in the cold. No, not in the cold! for the potassium and oxygen made such a great heat in clashing together that the rest of the hydrogen became very hot indeed, and sprang into the air to find some other companion to make up for what it had lost. Here it found some free oxygen floating about, and it seized upon it so violently, that they made a burning flame, while the potassium with its newly found oxygen and hydrogen sank down quietly into the water as potash. And so you see we have got quite a new substance potash in the basin; made with a great deal of fuss by chemical attraction drawing different atoms together.

When you can really picture this power to yourself it will help you very much to understand what you read and observe about nature.

Next, as plants grow around you on every side, and are of so much importance in the world, you must also learn something of the names of the different parts of a flower, so that you may understand those books which explain how a plant grows and lives and forms its seeds. You must also know the common names of the parts of an animal, and of your own body, so that you may be interested in understanding the use of the different organs; how you breathe, and how your blood flows; how one animal walks, another flies, and another swims. Then you must learn something of the various parts of the world, so that you may know what is meant by a river, a plain, a valley, or a delta. All these things are not difficult, you can learn them pleasantly from simple books on physics, chemistry, botany, physiology, and physical geography; and when you understand a few plain scientific terms, then all by yourself, if you will open your eyes and ears, you may wander happily in the fairy-land of science. Then wherever you go you will find

"Tongues in trees, books in the running brooks Sermons in stones, and good in everything."

And now we come to the last part of our subject. When you have reached and entered the gates of science, how are you to use and enjoy this new and beautiful land?

This is a very important question for you may make a twofold use of it. If you are only ambitious to shine in the world, you may use it chiefly to get prizes, to be at the top of your class, or to pass in examinations; but if you also enjoy discovering its secrets, and desire to learn more and more of nature and to revel in dreams of its beauty, then you will study science for its own sake as well. Now it is a good thing to win prizes and be at the top of your class, for it shows that you are industrious; it is a good thing to pass well in examinations , for it show that you are accurate; but if you study science for this reason only, do not complain if you find it full, and dry, and hard to master. You may learn a great deal that is useful, and nature will answer you truthfully if you ask you questions accurately, but she will give you dry facts, just such as you ask for. If you do not love her for herself she will never take you to her heart.

This is the reason why so many complain that science is dry and uninteresting. They forget that though it is necessary to learn accurately, for so only we can arrive at truth, it is equally necessary to love knowledge and make it lovely to those who learn, and to do this we must get at the spirit which lies under the facts. What child which loves its mother's face is content to know only that she has brown eyes, a straight nose, a small mouth, and hair arranged in such and such a manner? No, it knows that its mother has the sweetest smile of any woman living; that her eyes are loving, her kiss is sweet, and that when she looks grave, then something is wrong which must be put right. And it is in this way that those who wish to enjoy the fairy-land of science must love nature.

It is well to know that when a piece of potassium is thrown on water the change which takes place is expressed by the formula K + H2O = KHO + H. But it is better still to have a mental picture of the tiny atoms clasping each other, and mingling so as to make a new substance, and to feel how wonderful are the many changing forms of nature. It is useful to be able to classify a flower and to know that the buttercup belongs to the Family Ranunculaceae, with petals free and definite, stamens hypogynous and indefinite, pistil apocarpous. But it is far sweeter to learn about the life of the little plant, to understand why its peculiar flower is useful to it, and how it feeds itself, and makes its seed. No one can love dry facts; we must clothe them with real meaning and love the truths they tell, if we wish to enjoy science.

Let us take an example to show this. I have here a branch of white coral, a beautiful, delicate piece of nature's work. We will begin by copying a description of it from one of those class-books which suppose children to learn words like parrots, and to repeat them with just as little understanding.

"Coral is formed by an animal belonging to the kingdom of Radiates, sub-kingdom Polypes. The soft body of the animal is attached to a support, the mouth opening upwards in a row of tentacles. The coral is secreted in the body of the polyp out of the carbonate of lime in the sea. Thus the coral animalcule rears its polypidom or rocky structure in warm latitudes, and constructs reefs or barriers round islands. It is limited in rage of depth from 25 to 30 fathoms. Chemically considered, coral is carbonate of like; physiologically, it is the skeleton of an animal; geographically, it is characteristic of warm latitudes, especially of the Pacific Ocean." This description is correct, and even fairly complete, if you know enough of the subject to understand it. But tell me, does it lead you to love my piece of coral? Have you any picture in your mind of the coral animal, its home, or its manner of working?

But now, instead of trying to master this dry, hard passage, take Mr. Huxley's penny lecture on 'Coral and Coral Reefs,' and with the piece of coral in your hand try really to learn its history. You will then be able to picture to yourself the coral animal as a kind of sea-anemone, something like those which you have often seen, like red, blue, or green flowers, putting out feelers in sea-water on our coasts, and drawing in the tiny sea-animals to

The Fairy-Land of Science - 3/30

Previous Page     Next Page

  1    2    3    4    5    6    7    8   10   20   30 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything