Schulers Books Online

books - games - software - wallpaper - everything

Bride.Ru

Books Menu

Home
Author Catalog
Title Catalog
Sectioned Catalog

 

- The Fairy-Land of Science - 6/30 -


And now how large do you think they turn out to be? so very, very tiny that about fifty thousand waves are contained in a single inch of space! I have drawn on the board the length of an inch, and now I will measure the same space in the air between my finger and thumb. Within this space at this moment there are fifty thousand tiny waves moving up and down. I promised you we would find in science things as wonderful as in fairy tales. Are not these tiny invisible messengers coming incessantly from the sun as wonderful as any fairies? and still more so when, as we shall see presently, they are doing nearly all the work of our world.

We must next try to realize how fast these waves travel. You will remember that an express train would take 171 years to reach us from the sun; and even a cannon-ball would take from ten to thirteen years to come that distance. Well, these tiny waves take only seven minutes and a half to come the whole 91 millions of miles. The waves which are hitting your eye at this moment are caused by a movement which began at the sun only 7 1/2 minutes ago. And remember, this movement is going on incessantly, and these waves are always following one after the other so rapidly that they keep up a perpetual cannonade upon the pupil of your eye. So fast do they come that about 608 billion waves enter your eye in one single second.* I do not ask you to remember these figures; I only ask you to try and picture to yourselves these infinitely tiny and active invisible messengers from the sun, and to acknowledge that light is a fairy thing. (*Light travels at the rate of 190,000 miles, or 12,165,120,000 inches in a second. Taking the average number of wave-lengths in an inch at 50,000, then 12,165,120,000 X 50,000 = 608,256,000,000,000.)

But we do not yet know all about our sunbeams. See, I have here a piece of glass with three sides, called a prism. If I put it in the sunlight which is streaming through the window, what happens? Look! on the table there is a line of beautiful colours. I can make it long or short, as I turn the prism, but the colours always remain arranged in the same way. Here at my left hand is the red, beyond it orange, then yellow, green, blue, indigo or deep blue, and violet, shading one into the other all along the line. We have all seen these colours dancing on the wall when the sun has been shining brightly on the cut-glass pendants of the chandelier, and you may see them still more distinctly if you let a ray of light into a darkened room, and pass it through the prism as in the diagram (Fig. 7). What are these colours? Do they come from the glass? No; for you will remember to have seen them in the rainbow, and in the soap- bubble, and even in a drop of dew or the scum on the top of a pond. This beautiful coloured line is only our sunbeam again, which has been split up into many colours by passing through the glass, as it is in the rain-drops of the rainbow and the bubbles of the scum of the pond.

Week 5

Till now we have talked of the sunbeam as if it were made of only one set of waves of different sizes, all travelling along together from the sun. These various waves have been measured, and we know that the waves which make up red light are larger and more lazy than those which make violet light, so that there are only thirty-nine thousand red waves in an inch, while there are fifty-seven thousand violet waves in the same space.

How is it then, that if all these different waves making different colours, hit on our eye, they do not always make us see coloured light? Because, unless they are interfered with, they all travel along together, and you know that all colours, mixed together in proper proportion, make white.

I have here a round piece of cardboard, painted with the seven colours in succession several times over. When it is still you can distinguish them all apart, but when I whirl it quickly round - see! - the cardboard looks quite white, because we see them all so instantaneously that they are mingled together. In the same way light looks white to you, because all the different coloured waves strike on your eye at once. You can easily make on of these card for yourselves only the white will always look dirty, because you cannot get the colours pure.

Now, when the light passes through the three-sided glass or prism, the waves are spread out, and the slow, heavy, red waves lag behind and remain at the lower end R of the coloured line on the wall (Fig. 7), while the rapid little violet waves are bent more out of their road and run to V at the farther end of the line; and the orange, yellow, green, blue, and indigo arrange themselves between, according to the size of their waves.

And now you are very likely eager to ask why the quick waves should make us see one colour, and the slow waves another. This is a very difficult question, for we have a great deal still to learn about the effect of light on the eye. But you can easily imagine that colour is to our eye much the same as music is to our ear. You know we can distinguish different notes when the air-waves play slowly or quickly upon the drum of the ear (as we shall see in Lecture VI) and somewhat in the same way the tiny waves of the ether play on the retina or curtain at the back of our eye, and make the nerves carry different messages to the brain: and the colour we see depends upon the number of waves which play upon the retina in a second.

Do you think we have now rightly answered the question - What is a sunbeam? We have seen that it is really a succession of tiny rapid waves, travelling from the sun to us across the invisible substance we call "ether", and keeping up a constant cannonade upon everything which comes in their way. We have also seen that, tiny as these waves are, they can still vary in size, so that one single sunbeam is made up of myriads of different-sized waves, which travel all together and make us see white light; unless for some reason they are scattered apart, so that we see them separately as red, green, blue, or yellow. How they are scattered, and many other secrets of the sun-waves, we cannot stop to consider not, but must pass on to ask -

What work do the sunbeams do for us?

They do two things - they give us light and heat. It is by means of them alone that we see anything. When the room was dark you could not distinguish the table, the chairs, or even the walls of the room. Why? Because they had no light-waves to send to your eye. But as the sunbeams began to pour in at the window, the waves played upon the things in the room, and when they hit them they bounded off them back to your eye, as a wave of the sea bounds back from a rock and strikes against a passing boat. Then, when they fell upon your eye, they entered it and excited the retina and the nerves, and the image of the chair or the table was carried to your brain. Look around at all the things in this room. Is it not strange to think that each one of them is sending these invisible messengers straight to your eye as you look at it; and that you see me, and distinguish me from the table, entirely by the kind of waves we each send to you?

Some substances send back hardly any waves of light, but let them all pass through them, and thus we cannot see them. A pane of clear glass, for instance, lets nearly all the light-waves pass through it, and therefore you often cannot see that the glass is there, because no light-messengers come back to you from it. Thus people have sometimes walked up against a glass door and broken it, not seeing it was there. Those substances are transparent which, for some reason unknown to us, allow the ether waves to pass through them without shaking the atoms of which the substance is made. In clear glass, for example, all the light- waves pass through without affecting the substance of the glass; while in a white wall the larger part of the rays are reflected back to your eye, and those which pass into the wall, by giving motion to its atoms lose their own vibrations.

Into polished shining metal the waves hardly enter at all, but are thrown back from the surface; and so a steel knife or a silver spoon are very bright, and are clearly seen. Quicksilver is put at the back of looking-glasses because it reflects so many waves. It not only sends back those which come from the sun, but those, too, which come from your face. So, when you see yourself in a looking-glass, the sun-waves have first played on your face and bounded off from it to the looking-glass; then, when they strike the looking-glass, they are thrown back again on to the retina of your eye, and you see your own face by means of the very waves you threw off from it an instant before.

But the reflected light-waves do more for us than this. They not only make us see things, but they make us see them in different colours. What, you will ask, is this too the work of the sunbeams? Certainly; for if the colour we see depends on the size of the waves which come back to us, then we must see things coloured differently according to the waves they send back. For instance, imagine a sunbeam playing on a leaf: part of its waves bound straight back from it to our eye and make us see the surface of the leaf, but the rest go right into the leaf itself, and there some of them are used up and kept prisoners. The red, orange, yellow, blue, and violet waves are all useful to the leaf, and it does not let them go again. But it cannot absorb the green waves, and so it throws them back, and they travel to your eye and make you see a green colour. So when you say a leaf is green, you mean that the leaf does not want the green waves of the sunbeam, but sends them back to you. In the same way the scarlet geranium rejects the red waves; this table sends back brown waves; a white tablecloth sends back nearly the whole of the waves, and a black coat scarcely any. This is why, when there is very little light in the room, you can see a white tablecloth while you would not be able to distinguish a black object, because the few faint rays that are there, are all sent back to you from a white surface.

Is it not curious to think that there is really no such thing as colour in the leaf, the table, the coat, or the geranium flower, but we see them of different colours because, for some reason, they send back only certain coloured waves to our eye?

Wherever you look, then, and whatever you see, all the beautiful tints, colours, lights, and shades around you are the work of the tiny sun-waves.

Again, light does a great deal of work when it falls upon plants. Those rays of light which are caught by the leaf are by no means idle; we shall see in Lecture VII that the leaf uses them to digest its food and make the sap on which the plant feeds.


The Fairy-Land of Science - 6/30

Previous Page     Next Page

  1    2    3    4    5    6    7    8    9   10   11   20   30 

Schulers Books Home



 Games Menu

Home
Balls
Battleship
Buzzy
Dice Poker
Memory
Mine
Peg
Poker
Tetris
Tic Tac Toe

Google
 
Web schulers.com
 

Schulers Books Online

books - games - software - wallpaper - everything