Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog



branchlets of the petiole are in this condition, and we then have a true tendril.

The several terminal branches of the petiole bearing the much reduced leaflets (a, b, c, d) are highly sensitive, for a loop of thread weighing only the one-sixteenth of a grain (4.05 mg.) caused them to become greatly curved in under 4 hrs. When the loop was removed, the petioles straightened themselves in about the same time. The petiole (e) was rather less sensitive; and in another specimen, in which the corresponding petiole bore rather larger leaflets, a loop of thread weighing one-eighth of a grain did not cause curvature until 18 hrs. had elapsed. Loops of thread weighing one-fourth of a grain, left suspended on the lower petioles (f to l) during several days, produced no effect. Yet the three petioles f, g, and h were not quite insensible, for when left in contact with a stick for a day or two they slowly curled round it. Thus the sensibility of the petiole gradually diminishes from the tendril-like extremity to the base. The internodes of the stem are not at all sensitive, which makes Mohl's statement that they are sometimes converted into tendrils the more surprising, not to say improbable.

The whole leaf, whilst young and sensitive, stands almost vertically upwards, as we have seen to be the case with many tendrils. It is in continual movement, and one that I observed swept at an average rate of about 2 hrs. for each revolution, large, though irregular, ellipses, which were sometimes narrow, sometimes broad, with their longer axes directed to different points of the compass. The young internodes, likewise revolved irregularly in ellipses or spires; so that by these combined movements a considerable space was swept for a support. If the terminal and attenuated portion of a petiole fails to seize any object, it ultimately bends downwards and inwards, and soon loses all irritability and power of movement. This bending down differs much in nature from that which occurs with the extremities of the young leaves in many species of Clematis; for these, when thus bent downwards or hooked, first acquire their full degree of sensitiveness.

Dicentra thalictrifolia.--In this allied plant the metamorphosis of the terminal leaflets is complete, and they are converted into perfect tendrils. Whilst the plant is young, the tendrils appear like modified branches, and a distinguished botanist thought that they were of this nature; but in a full-grown plant there can be no doubt, as I am assured by Dr. Hooker, that they are modified leaves. When of full size, they are above 5 inches in length; they bifurcate twice, thrice, or even four times; their extremities are hooked and blunt. All the branches of the tendrils are sensitive on all sides, but the basal portion of the main stem is only slightly so. The terminal branches when lightly rubbed with a twig became curved in the course of from 30 m. to 42 m., and straightened themselves in between 10 hrs. and 20 hrs. A loop of thread weighing one-eighth of a grain plainly caused the thinner branches to bend, as did occasionally a loop weighing one-sixteenth of a grain; but this latter weight, though left suspended, was not sufficient to cause a permanent flexure. The whole leaf with its tendril, as well as the young upper internodes, revolves vigorously and quickly, though irregularly, and thus sweeps a wide space. The figure traced on a bell-glass was either an irregular spire or a zigzag line. The nearest approach to an ellipse was an elongated figure of 8, with one end a little open, and this was completed in 1 hr. 53 m. During a period of 6 hrs. 17 m. another shoot made a complex figure, apparently representing three and a half ellipses. When the lower part of the petiole bearing the leaflets was securely fastened, the tendril itself described similar but much smaller figures.

This species climbs well. The tendrils after clasping a stick become thicker and more rigid; but the blunt hooks do not turn and adapt themselves to the supporting surface, as is done in so perfect a manner by some Bignoniaceae and Cobaea. The tendrils of young plants, two or three feet in height, are only half the length of those borne by the same plant when grown taller, and they do not contract spirally after clasping a support, but only become slightly flexuous. Full-sized tendrils, on the other hand, contract spirally, with the exception of the thick basal portion. Tendrils which have caught nothing simply bend downwards and inwards, like the extremities of the leaves of the Corydalis claviculata. But in all cases the petiole after a time is angularly and abruptly bent downwards like that of Eccremocarpus.


CUCURBITACEAE.--Homologous nature of the tendrils--Echinocystis lobata, remarkable movements of the tendrils to avoid seizing the terminal shoot--Tendrils not excited by contact with another tendril or by drops of water--Undulatory movement of the extremity of the tendril--Hanburya, adherent discs--VITACAE--Gradation between the flower-peduncles and tendrils of the vine--Tendrils of the Virginian Creeper turn from the light, and, after contact, develop adhesive discs--SAPINDACEAE--PASSIFLORACEAE--Passiflora gracilis--Rapid revolving movement and sensitiveness of the tendrils--Not sensitive to the contact of other tendrils or of drops of water--Spiral contraction of tendrils--Summary on the nature and action of tendrils.

CUCURBITACEAE.--The tendrils in this family have been ranked by competent judges as modified leaves, stipules, or branches; or as partly a leaf and partly a branch. De Candolle believes that the tendrils differ in their homological nature in two of the tribes. {29} From facts recently adduced, Mr. Berkeley thinks that Payer's view is the most probable, namely, that the tendril is "a separate portion of the leaf itself;" but much may be said in favour of the belief that it is a modified flower-peduncle. {30}

Echinocystis lobata.--Numerous observations were made on this plant (raised from seed sent me by Prof. Asa Gray), for the spontaneous revolving movements of the internodes and tendrils were first observed by me in this case, and greatly perplexed me. My observations may now be much condensed. I observed thirty-five revolutions of the internodes and tendrils; the slowest rate was 2 hrs. and the average rate, with no great fluctuations, 1 hr. 40 m. Sometimes I tied the internodes, so that the tendrils alone moved; at other times I cut off the tendrils whilst very young, so that the internodes revolved by themselves; but the rate was not thus affected. The course generally pursued was with the sun, but often in an opposite direction. Sometimes the movement during a short time would either stop or be reversed; and this apparently was due to interference from the light, as, for instance, when I placed a plant close to a window. In one instance, an old tendril, which had nearly ceased revolving, moved in one direction, whilst a young tendril above moved in an opposite course. The two uppermost internodes alone revolve; and as soon as the lower one grows old, only its upper part continues to move. The ellipses or circles swept by the summits of the internodes are about three inches in diameter; whilst those swept by the tips of the tendrils, are from 15 to 16 inches in diameter. During the revolving movement, the internodes become successively curved to all points of the compass; in one part of their course they are often inclined, together with the tendrils, at about 45 degrees to the horizon, and in another part stand vertically up. There was something in the appearance of the revolving internodes which continually gave the false impression that their movement was due to the weight of the long and spontaneously revolving tendril; but, on cutting off the latter with sharp scissors, the top of the shoot rose only a little, and went on revolving. This false appearance is apparently due to the internodes and tendrils all curving and moving harmoniously together.

A revolving tendril, though inclined during the greater part of its course at an angle of about 45 degrees (in one case of only 37 degrees) above the horizon, stiffened and straightened itself from tip to base in a certain part of its course, thus becoming nearly or quite vertical. I witnessed this repeatedly; and it occurred both when the supporting internodes were free and when they were tied up; but was perhaps most conspicuous in the latter case, or when the whole shoot happened to be much inclined. The tendril forms a very acute angle with the projecting extremity of the stem or shoot; and the stiffening always occurred as the tendril approached, and had to pass over the shoot in its circular course. If it had not possessed and exercised this curious power, it would infallibly have struck against the extremity of the shoot and been arrested. As soon as the tendril with its three branches begins to stiffen itself in this manner and to rise from an inclined into a vertical position, the revolving motion becomes more rapid; and as soon as the tendril has succeeded in passing over the extremity of the shoot or point of difficulty, its motion, coinciding with that from its weight, often causes it to fall into its previously inclined position so quickly, that the apex could be seen travelling like the minute hand of a gigantic clock.

The tendrils are thin, from 7 to 9 inches in length, with a pair of short lateral branches rising not far from the base. The tip is slightly and permanently curved, so as to act to a limited extent as a hook. The concave side of the tip is highly sensitive to a touch; but not so the convex side, as was likewise observed to be the case with other species of the family by Mohl (p. 65). I repeatedly proved this difference by lightly rubbing four or five times the convex side of one tendril, and only once or twice the concave side of another tendril, and the latter alone curled inwards. In a few hours afterwards, when the tendrils which had been rubbed on the concave side had straightened themselves, I reversed the process of rubbing, and always with the same result. After touching the concave side, the tip becomes sensibly curved in one or two minutes; and subsequently, if the touch has been at all rough, it coils itself into a helix. But the helix will, after a time, straighten itself, and be again ready to act. A loop of thin thread only one-sixteenth of a grain in weight caused a temporary flexure. The lower part was repeatedly rubbed rather roughly, but no curvature ensued; yet this part is sensitive to prolonged pressure, for when it came into contact with a stick, it would slowly wind round it.

One of my plants bore two shoots near together, and the tendrils were repeatedly drawn across one another, but it is a singular fact that they did not once catch each other. It would appear as if they had become habituated to contact of this kind, for the pressure thus caused must have been much greater than that caused by a loop of soft thread weighing only the one-sixteenth of a grain. I have, however, seen several tendrils of Bryonia dioica interlocked, but they subsequently released one another. The tendrils of the Echinocystis are also habituated to drops of water or to rain; for artificial rain made by violently flirting a wet brush over them produced not the least effect.

The revolving movement of a tendril is not stopped by the curving of its extremity after it has been touched. When one of the lateral branches has firmly clasped an object, the middle branch continues to revolve. When a stem is bent down and secured, so that the tendril depends but is left free to move, its previous revolving movement is nearly or quite stopped; but it soon begins to bend upwards, and as


Previous Page     Next Page

  1   10   11   12   13   14   15   16   17   18   19   20   21   27 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything