Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog



bearing from some cause only two buds; and this one branchlet had become much elongated and had spontaneously caught hold of an adjoining twig; in fact, it formed a little sub-tendril. The increasing length of the sub-peduncle (C) with the decreasing number of the flower-buds is a good instance of the law of compensation. In accordance with this same principle, the true tendril as a whole is always longer than the flower-stalk; for instance, on the same plant, the longest flower-stalk (measured from the base of the common peduncle to the tip of the flower-tendril) was 8.5 inches in length, whilst the longest tendril was nearly double this length, namely 16 inches.

The gradations from the ordinary state of a flower-stalk, as represented in the drawing (fig. 10), to that of a true tendril (fig. 9) are complete. We have seen that the sub-peduncle (C), whilst still bearing from thirty to forty flower-buds, sometimes becomes a little elongated and partially assumes all the characters of the corresponding branch of a true tendril. From this state we can trace every stage till we come to a full-sized perfect tendril, bearing on the branch which corresponds with the sub-peduncle one single flower- bud! Hence there can be no doubt that the tendril is a modified flower-peduncle.

Another kind of gradation well deserves notice. Flower-tendrils (B, fig. 10) sometimes produce a few flower-buds. For instance, on a vine growing against my house, there were thirteen and twenty-two flower-buds respectively on two flower-tendrils, which still retained their characteristic qualities of sensitiveness and spontaneous movement, but in a somewhat lessened degree. On vines in hothouses, so many flowers are occasionally produced on the flower-tendrils that a double bunch of grapes is the result; and this is technically called by gardeners a "cluster." In this state the whole bunch of flowers presents scarcely any resemblance to a tendril; and, judging from the facts already given, it would probably possess little power of clasping a support, or of spontaneous movement. Such flower- stalks closely resemble in structure those borne by Cissus. This genus, belonging to the same family of the Vitaceae, produces well- developed tendrils and ordinary bunches of flowers; but there are no gradations between the two states. If the genus Vitis had been unknown, the boldest believer in the modification of species would never have surmised that the same individual plant, at the same period of growth, would have yielded every possible gradation between ordinary flower-stalks for the support of the flowers and fruit, and tendrils used exclusively for climbing. But the vine clearly gives us such a case; and it seems to me as striking and curious an instance of transition as can well be conceived.

Cissus discolor.--The young shoots show no more movement than can be accounted for by daily variations in the action of the light. The tendrils, however, revolve with much regularity, following the sun; and, in the plants observed by me, swept circles of about 5 inches in diameter. Five circles were completed in the following times:- 4 hrs. 45 m., 4 hrs. 50 m., 4 hrs. 45 m., 4 hrs. 30 m., and 5 hrs. The same tendril continues to revolve during three or four days. The tendrils are from 3.5 to 5 inches in length. They are formed of a long foot-stalk, bearing two short branches, which in old plants again bifurcate. The two branches are not of quite equal length; and as with the vine, the longer one has a scale at its base. The tendril stands vertically upwards; the extremity of the shoot being bent abruptly downwards, and this position is probably of service to the plant by allowing the tendril to revolve freely and vertically.

Both branches of the tendril, whilst young, are highly sensitive. A touch with a pencil, so gentle as only just to move a tendril borne at the end of a long flexible shoot, sufficed to cause it to become perceptibly curved in four or five minutes. It became straight again in rather above one hour. A loop of soft thread weighing one-seventh of a grain (9.25 mg.) was thrice tried, and each time caused the tendril to become curved in 30 or 40 m. Half this weight produced no effect. The long foot-stalk is much less sensitive, for a slight rubbing produced no effect, although prolonged contact with a stick caused it to bend. The two branches are sensitive on all sides, so that they converge if touched on their inner sides, and diverge if touched on their outer sides. If a branch be touched at the same time with equal force on opposite sides, both sides are equally stimulated and there is no movement. Before examining this plant, I had observed only tendrils which are sensitive on one side alone, and these when lightly pressed between the finger and thumb become curved; but on thus pinching many times the tendrils of the Cissus no curvature ensued, and I falsely inferred at first that they were not at all sensitive.

Cissus antarcticus.--The tendrils on a young plant were thick and straight, with the tips a little curved. When their concave surfaces were rubbed, and it was necessary to do this with some force, they very slowly became curved, and subsequently straight again. They are therefore much less sensitive than those of the last species; but they made two revolutions, following the sun, rather more rapidly, viz., in 3 hrs. 30 m. and 4 hrs. The internodes do not revolve.

Ampelopsis hederacea (Virginian Creeper).--The internodes apparently do not move more than can be accounted for by the varying action of the light. The tendrils are from 4 to 5 inches in length, with the main stem sending off several lateral branches, which have their tips curved, as may be seen in the upper figure (fig. 11). They exhibit no true spontaneous revolving movement, but turn, as was long ago observed by Andrew Knight, {31} from the light to the dark. I have seen several tendrils move in less than 24 hours, through an angle of 180 degrees to the dark side of a case in which a plant was placed, but the movement is sometimes much slower. The several lateral branches often move independently of one another, and sometimes irregularly, without any apparent cause. These tendrils are less sensitive to a touch than any others observed by me. By gentle but repeated rubbing with a twig, the lateral branches, but not the main stem, became in the course of three or four hours slightly curved; but they seemed to have hardly any power of again straightening themselves. The tendrils of a plant which had crawled over a large box-tree clasped several of the branches; but I have repeatedly seen that they will withdraw themselves after seizing a stick. When they meet with a flat surface of wood or a wall (and this is evidently what they are adapted for), they turn all their branches towards it, and, spreading them widely apart, bring their hooked tips laterally into contact with it. In effecting this, the several branches, after touching the surface, often rise up, place themselves in a new position, and again come down into contact with it.

In the course of about two days after a tendril has arranged its branches so as to press on any surface, the curved tips swell, become bright red, and form on their under-sides the well-known little discs or cushions with which they adhere firmly. In one case the tips were slightly swollen in 38 hrs. after coming into contact with a brick; in another case they were considerably swollen in 48 hrs., and in an additional 24 hrs. were firmly attached to a smooth board; and lastly, the tips of a younger tendril not only swelled but became attached to a stuccoed wall in 42 hrs. These adhesive discs resemble, except in colour and in being larger, those of Bignonia capreolata. When they were developed in contact with a ball of tow, the fibres were separately enveloped, but not in so effective a manner as by B. capreolata. Discs are never developed, as far as I have seen, without the stimulus of at least temporary contact with some object. {32} They are generally first formed on one side of the curved tip, the whole of which often becomes so much changed in appearance, that a line of the original green tissue can be traced only along the concave surface. When, however, a tendril has clasped a cylindrical stick, an irregular rim or disc is sometimes formed along the inner surface at some little distance from the curved tip; this was also observed (p. 71) by Mohl. The discs consist of enlarged cells, with smooth projecting hemispherical surfaces, coloured red; they are at first gorged with fluid (see section given by Mohl, p. 70), but ultimately become woody.

As the discs soon adhere firmly to such smooth surfaces as planed or painted wood, or to the polished leaf of the ivy, this alone renders it probable that some cement is secreted, as has been asserted to be the case (quoted by Mohl, p. 71) by Malpighi. I removed a number of discs formed during the previous year from a stuccoed wall, and left them during many hours, in warm water, diluted acetic acid and alcohol; but the attached grains of silex were not loosened. Immersion in sulphuric ether for 24 hrs. loosened them much, but warmed essential oils (I tried oil of thyme and peppermint) completely released every particle of stone in the course of a few hours. This seems to prove that some resinous cement is secreted. The quantity, however, must be small; for when a plant ascended a thinly whitewashed wall, the discs adhered firmly to the whitewash; but as the cement never penetrated the thin layer, they were easily withdrawn, together with little scales of the whitewash. It must not be supposed that the attachment is effected exclusively by the cement; for the cellular outgrowth completely envelopes every minute and irregular projection, and insinuates itself into every crevice.

A tendril which has not become attached to any body, does not contract spirally; and in course of a week or two shrinks into the finest thread, withers and drops off. An attached tendril, on the other hand, contracts spirally, and thus becomes highly elastic, so that when the main foot-stalk is pulled the strain is distributed equally between all the attached discs. For a few days after the attachment of the discs, the tendril remains weak and brittle, but it rapidly increases in thickness and acquires great strength. During the following winter it ceases to live, but adheres firmly in a dead state both to its own stem and to the surface of attachment. In the accompanying diagram (fig. 11.) we see the difference between a tendril (B) some weeks after its attachment to a wall, with one (A) from the same plant fully grown but unattached. That the change in the nature of the tissues, as well as the spiral contraction, are consequent on the formation of the discs, is well shown by any lateral branches which have not become attached; for these in a week or two wither and drop off, in the same manner as does the whole tendril if unattached. The gain in strength and durability in a tendril after its attachment is something wonderful. There are tendrils now adhering to my house which are still strong, and have been exposed to the weather in a dead state for fourteen or fifteen years. One single lateral branchlet of a tendril, estimated to be at least ten years old, was still elastic and supported a weight of exactly two pounds. The whole tendril had five disc-bearing branches of equal thickness and apparently of equal strength; so that after having been exposed during ten years to the weather, it would probably have resisted a strain of ten pounds!

SAPINDACEAE.--Cardiospermum halicacabum.--In this family, as in the last, the tendrils are modified flower-peduncles. In the present plant the two lateral branches of the main flower-peduncle have been converted into a pair of tendrils, corresponding with the single "flower-tendril" of the common vine. The main peduncle is thin, stiff, and from 3 to 4.5 inches in length. Near the summit, above two little bracts, it divides into three branches. The middle one divides and re-divides, and bears the flowers; ultimately it grows half as long again as the two other modified branches. These latter are the tendrils; they are at first thicker and longer than the middle branch, but never become more than an inch in length. They taper to a point and are flattened, with the lower clasping surface


Previous Page     Next Page

  1   10   13   14   15   16   17   18   19   20   21   22   23   27 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything