Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog



succeed better than most kinds of tendril-bearers; but the majority of twiners, at least in our temperate regions, from the nature of their revolving movement, cannot ascend thick trunks, whereas this can be affected by tendril-bearers if the trunks are branched or bear twigs, and by some species if the bark is rugged.

The advantage gained by climbing is to reach the light and free air with as little expenditure of organic matter as possible; now, with twining plants, the stem is much longer than is absolutely necessary; for instance, I measured the stem of a kidney-bean, which had ascended exactly two feet in height, and it was three feet in length: the stem of a pea, on the other hand, which had ascended to the same height by the aid of its tendrils, was but little longer than the height reached. That this saving of the stem is really an advantage to climbing plants, I infer from the species that still twine but are aided by clasping petioles or tendrils, generally making more open spires than those made by simple twiners. Moreover, the plants thus aided, after taking one or two turns in one direction, generally ascend for a space straight, and then reverse the direction of their spire. By this means they ascend to a considerably greater height, with the same length of stem, than would otherwise have been possible; and they do this with safety, as they secure themselves at intervals by their clasping petioles or tendrils.

We have seen that tendrils consist of various organs in a modified state, namely, leaves, flower-peduncles, branches, and perhaps stipules. With respect to leaves, the evidence of their modification is ample. In young plants of Bignonia the lower leaves often remain quite unchanged, whilst the upper ones have their terminal leaflets converted into perfect tendrils; in Eccremocarpus I have seen a single lateral branch of a tendril replaced by a perfect leaflet; in Vicia sativa, on the other hand, leaflets are sometimes replaced by tendril-branches; and many other such cases could be given. But he who believes in the slow modification of species will not be content simply to ascertain the homological nature of different kinds of tendrils; he will wish to learn, as far as is possible, by what actual steps leaves, flower-peduncles, &c., have had their functions wholly changed, and have come to serve merely as prehensile organs.

In the whole group of leaf-climbers abundant evidence has been given that an organ, still subserving the functions of a leaf, may become sensitive to a touch, and thus grasp an adjoining object. With several leaf-climbers the true leaves spontaneously revolve; and their petioles, after clasping a support grow thicker and stronger. We thus see that leaves may acquire all the leading and characteristic qualities of tendrils, namely, sensitiveness, spontaneous movement, and subsequently increased strength. If their blades or laminae were to abort, they would form true tendrils. And of this process of abortion we can follow every step, until no trace of the original nature of the tendril is left. In Mutisia clematis, the tendril, in shape and colour, closely resembles the petiole of one of the ordinary leaves, together with the midribs of the leaflets, but vestiges of the laminae are still occasionally retained. In four genera of the Fumariaceae we can follow the whole process of transformation. The terminal leaflets of the leaf- climbing Fumaria officinalis are not smaller than the other leaflets; those of the leaf-climbing Adlumia cirrhosa are greatly reduced; those of Corydalis claviculata (a plant which may indifferently be called a leaf-climber or a tendril-bearer) are either reduced to microscopical dimensions or have their blades wholly aborted, so that this plant is actually in a state of transition; and, finally, in the Dicentra the tendrils are perfectly characterized. If, therefore, we could behold at the same time all the progenitors of Dicentra, we should almost certainly see a series like that now exhibited by the above-named three genera. In Tropaeolum tricolorum we have another kind of passage; for the leaves which are first formed on the young stems are entirely destitute of laminae, and must be called tendrils, whilst the later formed leaves have well-developed laminae. In all cases the acquirement of sensitiveness by the mid-ribs of the leaves appears to stand in some close relation with the abortion of their laminae or blades.

On the view here given, leaf-climbers were primordially twiners, and tendril-bearers (when formed of modified leaves) were primordially leaf-climbers. The latter, therefore, are intermediate in nature between twiners and tendril-bearers, and ought to be related to both. This is the case: thus the several leaf-climbing species of the Antirrhineae, of Solanum, Cocculus, and Gloriosa, have within the same family and even within the same genus, relatives which are twiners. In the genus Mikania, there are leaf-climbing and twining species. The leaf-climbing species of Clematis are very closely allied to the tendril-bearing Naravelia. The Fumariaceae include closely allied genera which are leaf-climbers and tendril-bearers. Lastly, a species of Bignonia is at the same time both a leaf-climber and a tendril-bearer; and other closely allied species are twiners.

Tendrils of another kind consist of modified flower-peduncles. In this case we likewise have many interesting transitional states. The common Vine (not to mention the Cardiospermum) gives us every possible gradation between a perfectly developed tendril and a flower-peduncle covered with flowers, yet furnished with a branch, forming the flower-tendril. When the latter itself bears a few flowers, as we know sometimes is the case, and still retains the power of clasping a support, we see an early condition of all those tendrils which have been formed by the modification of flower- peduncles.

According to Mohl and others, some tendrils consist of modified branches: I have not observed any such cases, and know nothing of their transitional states, but these have been fully described by Fritz Muller. The genus Lophospermum also shows us how such a transition is possible; for its branches spontaneously revolve and are sensitive to contact. Hence, if the leaves on some of the branches of the Lophospermum were to abort, these branches would be converted into true tendrils. Nor is there anything improbable in certain branches alone being thus modified, whilst others remained unaltered; for we have seen with certain varieties of Phaseolus, that some of the branches are thin, flexible, and twine, whilst other branches on the same plant are stiff and have no such power.

If we inquire how a petiole, a branch or flower-peduncle first became sensitive to a touch, and acquired the power of bending towards the touched side, we get no certain answer. Nevertheless an observation by Hofmeister {44} well deserves attention, namely, that the shoots and leaves of all plants, whilst young, move after being shaken. Kerner also finds, as we have seen, that the flower-peduncles of a large number of plants, if shaken or gently rubbed bend to this side. And it is young petioles and tendrils, whatever their homological nature may be, which move on being touched. It thus appears that climbing plants have utilized and perfected a widely distributed and incipient capacity, which capacity, as far as we can see, is of no service to ordinary plants. If we further inquire how the stems, petioles, tendrils, and flower-peduncles of climbing plants first acquired their power of spontaneously revolving, or, to speak more accurately, of successively bending to all points of the compass, we are again silenced, or at most can only remark that the power of moving, both spontaneously and from various stimulants, is far more common with plants, than is generally supposed to be the case by those who have not attended to the subject. I have given one remarkable instance, namely that of the Maurandia semperflorens, the young flower-peduncles of which spontaneously revolve in very small circles, and bend when gently rubbed to the touched side; yet this plant certainly does not profit by these two feebly developed powers. A rigorous examination of other young plants would probably show slight spontaneous movements in their stems, petioles or peduncles, as well as sensitiveness to a touch. {45} We see at least that the Maurandia might, by a little augmentation of the powers which it already possesses, come first to grasp a support by its flower- peduncles, and then, by the abortion of some of its flowers (as with Vitis or Cardiospermum), acquire perfect tendrils.

There is one other interesting point which deserves notice. We have seen that some tendrils owe their origin to modified leaves, and others to modified flower-peduncles; so that some are foliar and others axial in their nature. It might therefore have been expected that they would have presented some difference in function. This is not the case. On the contrary, they present the most complete identity in their several characteristic powers. Tendrils of both kinds spontaneously revolve at about the same rate. Both, when touched, bend quickly to the touched side, and afterwards recover themselves and are able to act again. In both the sensitiveness is either confined to one side or extends all round the tendril. Both are either attracted or repelled by the light. The latter property is seen in the foliar tendrils of Bignonia capreolata and in the axial tendrils of Ampelopsis. The tips of the tendrils in these two plants become, after contact, enlarged into discs, which are at first adhesive by the secretion of some cement. Tendrils of both kinds, soon after grasping a support, contract spirally; they then increase greatly in thickness and strength. When we add to these several points of identity the fact that the petiole of Solanum jasminoides, after it has clasped a support, assumes one of the most characteristic features of the axis, namely, a closed ring of woody vessels, we can hardly avoid asking, whether the difference between foliar and axial organs can be of so fundamental a nature as is generally supposed? {46}

We have attempted to trace some of the stages in the genesis of climbing plants. But, during the endless fluctuations of the conditions of life to which all organic beings have been exposed, it might be expected that some climbing plants would have lost the habit of climbing. In the cases given of certain South African plants belonging to great twining families, which in their native country never twine, but reassume this habit when cultivated in England, we have a case in point. In the leaf-climbing Clematis flammula, and in the tendril-bearing Vine, we see no loss in the power of climbing, but only a remnant of the revolving power which is indispensable to all twiners, and is so common as well as so advantageous to most climbers. In Tecoma radicans, one of the Bignoniaceae, we see a last and doubtful trace of the power of revolving.

With respect to the abortion of tendrils, certain cultivated varieties of Cucurbita pepo have, according to Naudin, {47} either quite lost these organs or bear semi-monstrous representatives of them. In my limited experience, I have met with only one apparent instance of their natural suppression, namely, in the common bean. All the other species of Vicia, I believe, bear tendrils; but the bean is stiff enough to support its own stem, and in this species, at the end of the petiole, where, according to analogy, a tendril ought to have existed, a small pointed filament projects, about a third of an inch in length, and which is probably the rudiment of a tendril. This may be the more safely inferred, as in young and unhealthy specimens of other tendril-bearing plants similar rudiments may occasionally be observed. In the bean these filaments are variable in shape, as is so frequently the case with rudimentary organs; they are either cylindrical, or foliaceous, or are deeply furrowed on the upper surface. They have not retained any vestige of the power of revolving. It is a curious fact, that many of these filaments, when foliaceous, have on their lower surfaces, dark-coloured glands like those on the stipules, which excrete a sweet fluid; so that these rudiments have been feebly utilized.


Previous Page     Next Page

  1   10   19   20   21   22   23   24   25   26   27 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything