Schulers Books Online

books - games - software - wallpaper - everything

Bride.Ru

Books Menu

Home
Author Catalog
Title Catalog
Sectioned Catalog

 

- CLIMBING PLANTS - 25/27 -


One other analogous case, though hypothetical, is worth giving. Nearly all the species of Lathyrus possesses tendrils; but L. nissolia is destitute of them. This plant has leaves, which must have struck everyone with surprise who has noticed them, for they are quite unlike those of all common papilionaceous plants, and resemble those of a grass. In another species, L. aphaca, the tendril, which is not highly developed (for it is unbranched, and has no spontaneous revolving-power), replaces the leaves, the latter being replaced in function by large stipules. Now if we suppose the tendrils of L. aphaca to become flattened and foliaceous, like the little rudimentary tendrils of the bean, and the large stipules to become at the same time reduced in size, from not being any longer wanted, we should have the exact counterpart of L. nissolia, and its curious leaves are at once rendered intelligible to us.

It may be added, as serving to sum up the foregoing views on the origin of tendril-bearing plants, that L. nissolia is probably descended from a plant which was primordially a twiner; this then became a leaf-climber, the leaves being afterwards converted by degrees into tendrils, with the stipules greatly increased in size through the law of compensation. {48} After a time the tendrils lost their branches and became simple; they then lost their revolving- power (in which state they would have resembled the tendrils of the existing L. aphaca), and afterwards losing their prehensile power and becoming foliaceous would no longer be thus designated. In this last stage (that of the existing L. nissolia) the former tendrils would reassume their original function of leaves, and the stipules which were recently much developed being no longer wanted, would decrease in size. If species become modified in the course of ages, as almost all naturalists now admit, we may conclude that L. nissolia has passed through a series of changes, in some degree like those here indicated.

The most interesting point in the natural history of climbing plants is the various kinds of movement which they display in manifest relation to their wants. The most different organs--stems, branches, flower-peduncles, petioles, mid-ribs of the leaf and leaflets, and apparently aerial roots--all possess this power.

The first action of a tendril is to place itself in a proper position. For instance, the tendril of Cobaea first rises vertically up, with its branches divergent and with the terminal hooks turned outwards; the young shoot at the extremity of the stem is at the same time bent to one side, so as to be out of the way. The young leaves of Clematis, on the other hand, prepare for action by temporarily curving themselves downwards, so as to serve as grapnels.

Secondly, if a twining plant or a tendril gets by any accident into an inclined position, it soon bends upwards, though secluded from the light. The guiding stimulus no doubt is the attraction of gravity, as Andrew Knight showed to be the case with germinating plants. If a shoot of any ordinary plant be placed in an inclined position in a glass of water in the dark, the extremity will, in a few hours, bend upwards; and if the position of the shoot be then reversed, the downward-bent shoot reverses its curvature; but if the stolen of a strawberry, which has no tendency to grow upwards, be thus treated, it will curve downwards in the direction of, instead of in opposition to, the force of gravity. As with the strawberry, so it is generally with the twining shoots of the Hibbertia dentata, which climbs laterally from bush to bush; for these shoots, if placed in a position inclined downwards, show little and sometimes no tendency to curve upwards.

Thirdly, climbing plants, like other plants, bend towards the light by a movement closely analogous to the incurvation which causes them to revolve, so that their revolving movement is often accelerated or retarded in travelling to or from the light. On the other hand, in a few instances tendrils bend towards the dark.

Fourthly, we have the spontaneous revolving movement which is independent of any outward stimulus, but is contingent on the youth of the part, and on vigorous health; and this again of course depends on a proper temperature and other favourable conditions of life.

Fifthly, tendrils, whatever their homological nature may be, and the petioles or tips of the leaves of leaf-climbers, and apparently certain roots, all have the power of movement when touched, and bend quickly towards the touched side. Extremely slight pressure often suffices. If the pressure be not permanent, the part in question straightens itself and is again ready to bend on being touched.

Sixthly, and lastly, tendrils, soon after clasping a support, but not after a mere temporary curvature, contract spirally. If they have not come into contact with any object, they ultimately contract spirally, after ceasing to revolve; but in this case the movement is useless, and occurs only after a considerable lapse of time.

With respect to the means by which these various movements are effected, there can be little doubt from the researches of Sachs and H. de Vries, that they are due to unequal growth; but from the reasons already assigned, I cannot believe that this explanation applies to the rapid movements from a delicate touch.

Finally, climbing plants are sufficiently numerous to form a conspicuous feature in the vegetable kingdom, more especially in tropical forests. America, which so abounds with arboreal animals, as Mr. Bates remarks, likewise abounds according to Mohl and Palm with climbing plants; and of the tendril-bearing plants examined by me, the highest developed kinds are natives of this grand continent, namely, the several species of Bignonia, Eccremocarpus, Cobaea, and Ampelopsis. But even in the thickets of our temperate regions the number of climbing species and individuals is considerable, as will be found by counting them. They belong to many and widely different orders. To gain some rude idea of their distribution in the vegetable series, I marked, from the lists given by Mohl and Palm (adding a few myself, and a competent botanist, no doubt, could have added many more), all those families in Lindley's 'Vegetable Kingdom' which include twiners, leaf-climbers, or tendril-bearers. Lindley divides Phanerogamic plants into fifty-nine Alliances; of these, no less than thirty-five include climbing plants of the above kinds, hook and root-climbers being excluded. To these a few Cryptogamic plants must be added. When we reflect on the wide separation of these plants in the series, and when we know that in some of the largest, well-defined orders, such as the Compositae, Rubiaceae, Scrophulariaceae, Liliaceae, &c., species in only two or three genera have the power of climbing, the conclusion is forced on our minds that the capacity of revolving, on which most climbers depend, is inherent, though undeveloped, in almost every plant in the vegetable kingdom.

It has often been vaguely asserted that plants are distinguished from animals by not having the power of movement. It should rather be said that plants acquire and display this power only when it is of some advantage to them; this being of comparatively rare occurrence, as they are affixed to the ground, and food is brought to them by the air and rain. We see how high in the scale of organization a plant may rise, when we look at one of the more perfect tendril-bearers. It first places its tendrils ready for action, as a polypus places its tentacula. If the tendril be displaced, it is acted on by the force of gravity and rights it self. It is acted on by the light, and bends towards or from it, or disregards it, whichever may be most advantageous. During several days the tendrils or internodes, or both, spontaneously revolve with a steady motion. The tendril strikes some object, and quickly curls round and firmly grasps it. In the course of some hours it contracts into a spire, dragging up the stem, and forming an excellent spring. All movements now cease. By growth the tissues soon become wonderfully strong and durable. The tendril has done its work, and has done it in an admirable manner.

Footnotes:

{1} An English translation of the 'Lehrbuch der Botanik' by Professor Sachs, has recently (1875), appeared under the title of 'Text-Book of Botany,' and this is a great boon to all lovers of natural science in England.

{2} 'Proc. Amer. Acad. of Arts and Sciences,' vol. iv. Aug. 12, 1858, p. 98.

{3} Ludwig H. Palm, 'Ueber das Winden der Pflanzen;' Hugo von Mohl, 'Ueber den Bau und des Winden der Ranken und Schlingpflanzen,' 1827. Palm's Treatise was published only a few weeks before Mohl's. See also 'The Vegetable Cell' (translated by Henfrey), by H. von Mohl, p. 147 to end.

{4} "Des Mouvements revolutife Respontanes," &c., 'Comptes Rendus,' tom. xvii. (1843) p. 989; "Recherches sur la Volubilite des Tiges," &c., tom. xix. (1844) p. 295.

{5} 'Bull. Bot Soc. de France,' tom. v. 1858, p. 356.

{6} This whole subject has been ably discussed and explained by H. de Vries, 'Arbeiten des Bot. Instituts in Wurzburg,' Heft iii. pp. 331, 336. See also Sachs ('Text-Book of Botany,' English translation, 1875, p. 770), who concludes "that torsion is the result of growth continuing in the outer layers after it has ceased or begun to cease in the inner layers."

{7} Professor Asa Gray has remarked to me, in a letter, that in Thuja occidentalis the twisting of the bark is very conspicuous. The twist is generally to the right of the observer; but, in noticing about a hundred trunks, four or five were observed to be twisted in an opposite direction. The Spanish chestnut is often much twisted: there is an interesting article on this subject in the 'Scottish Farmer,' 1865, p. 833.

{8} It is well known that the stems of many plants occasionally become spirally twisted in a monstrous manner; and after my paper was read before the Linnean Society, Dr. Maxwell Masters remarked to me in a letter that "some of these cases, if not all, are dependent upon some obstacle or resistance to their upward growth." This conclusion agrees with what I have said about the twisting of stems, which have twined round rugged supports; but does not preclude the twisting being of service to the plant by giving greater rigidity to the stem.

{9} The view that the revolving movement or nutation of the stems of twining plants is due to growth is that advanced by Sachs and H. de Vries; and the truth of this view is proved by their excellent observations.

{10} The mechanism by which the end of the shoot remains hooked appears to be a difficult and complex problem, discussed by Dr. H. de Vries (ibid. p. 337): he concludes that "it depends on the relation between the rapidity of torsion and the rapidity of nutation."

{11} Dr. H. de Vries also has shown (ibid. p. 321 and 325) by a


CLIMBING PLANTS - 25/27

Previous Page     Next Page

  1   10   20   21   22   23   24   25   26   27 

Schulers Books Home



 Games Menu

Home
Balls
Battleship
Buzzy
Dice Poker
Memory
Mine
Peg
Poker
Tetris
Tic Tac Toe

Google
 
Web schulers.com
 

Schulers Books Online

books - games - software - wallpaper - everything