Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog



far as I have seen, never twine round trees, excepting the honeysuckle (Lonicera periclymenum), which I have observed twining up a young beech-tree nearly 4.5 inches in diameter. Mohl (p. 134) found that the Phaseolus multiflorus and Ipomoea purpurea could not, when placed in a room with the light entering on one side, twine round sticks between 3 and 4 inches in diameter; for this interfered, in a manner presently to be explained, with the revolving movement. In the open air, however, the Phaseolus twined round a support of the above thickness, but failed in twining round one 9 inches in diameter. Nevertheless, some twiners of the warmer temperate regions can manage this latter degree of thickness; for I hear from Dr. Hooker that at Kew the Ruscus androgynus has ascended a column 9 inches in diameter; and although a Wistaria grown by me in a small pot tried in vain for weeks to get round a post between 5 and 6 inches in thickness, yet at Kew a plant ascended a trunk above 6 inches in diameter. The tropical twiners, on the other hand, can ascend thicker trees; I hear from Drs. Thomson and Hooker that this is the case with the Butea parviflora, one of the Menispermaceae, and with some Dalbergias and other Leguminosae. {19} This power would be necessary for any species which had to ascend by twining the large trees of a tropical forest; otherwise they would hardly ever be able to reach the light. In our temperate countries it would be injurious to the twining plants which die down every year if they were enabled to twine round trunks of trees, for they could not grow tall enough in a single season to reach the summit and gain the light.

By what means certain twining plants are adapted to ascend only thin stems, whilst others can twine round thicker ones, I do not know. It appeared to me probable that twining plants with very long revolving shoots would be able to ascend thick supports; accordingly I placed Ceropegia Gardnerii near a post 6 inches in diameter, but the shoots entirely failed to wind round it; their great length and power of movement merely aid them in finding a distant stem round which to twine. The Sphaerostemma marmoratum is a vigorous tropical twiner; and as it is a very slow revolver, I thought that this latter circumstance might help it in ascending a thick support; but though it was able to wind round a 6-inch post, it could do this only on the same level or plane, and did not form a spire and thus ascend.

As ferns differ so much in structure from phanerogamic plants, it may be worth while here to show that twining ferns do not differ in their habits from other twining plants. In Lygodium articulatum the two internodes of the stem (properly the rachis) which are first formed above the root-stock do not move; the third from the ground revolves, but at first very slowly. This species is a slow revolver: but L. scandens made five revolutions, each at the average rate of 5 hrs. 45 m.; and this represents fairly well the usual rate, taking quick and slow movers, amongst phanerogamic plants. The rate was accelerated by increased temperature. At each stage of growth only the two upper internodes revolved. A line painted along the convex surface of a revolving internode becomes first lateral, then concave, then lateral and ultimately again convex. Neither the internodes nor the petioles are irritable when rubbed. The movement is in the usual direction, namely, in opposition to the course of the sun; and when the stem twines round a thin stick, it becomes twisted on its own axis in the same direction. After the young internodes have twined round a stick, their continued growth causes them to slip a little upwards. If the stick be soon removed, they straighten themselves, and recommence revolving. The extremities of the depending shoots turn upwards, and twine on themselves. In all these respects we have complete identity with twining phanerogamic plants; and the above enumeration may serve as a summary of the leading characteristics of all twining plants.

The power of revolving depends on the general health and vigour of the plant, as has been laboriously shown by Palm. But the movement of each separate internode is so independent of the others, that cutting off an upper one does not affect the revolutions of a lower one. When, however, Dutrochet cut off two whole shoots of the Hop, and placed them in water, the movement was greatly retarded; for one revolved in 20 hrs. and the other in 23 hrs., whereas they ought to have revolved in between 2 hrs. and 2 hrs. 30 m. Shoots of the Kidney-bean, cut off and placed in water, were similarly retarded, but in a less degree. I have repeatedly observed that carrying a plant from the greenhouse to my room, or from one part to another of the greenhouse, always stopped the movement for a time; hence I conclude that plants in a state of nature and growing in exposed situations, would not make their revolutions during very stormy weather. A decrease in temperature always caused a considerable retardation in the rate of revolution; but Dutrochet (tom. xvii. pp. 994, 996) has given such precise observations on this head with respect to the common pea that I need say nothing more. When twining plants are placed near a window in a room, the light in some cases has a remarkable power (as was likewise observed by Dutrochet, p. 998, with the pea) on the revolving movement, but this differs in degree with different plants; thus Ipomoea jucunda made a complete circle in 5 hrs. 30 m.; the semicircle from the light taking 4 hrs. 80 m., and that towards the light only 1 hr. Lonicera brachypoda revolved, in a reversed direction to the Ipomoea, in 8 hrs.; the semicircle from the light taking 5 hrs. 23 m., and that to the light only 2 hrs. 37 m. From the rate of revolution in all the plants observed by me, being nearly the same during the night and the day, I infer that the action of the light is confined to retarding one semicircle and accelerating the other, so as not to modify greatly the rate of the whole revolution. This action of the light is remarkable, when we reflect how little the leaves are developed on the young and thin revolving internodes. It is all the more remarkable, as botanists believe (Mohl, p. 119) that twining plants are but little sensitive to the action of light.

I will conclude my account of twining plants by giving a few miscellaneous and curious cases. With most twining plants all the branches, however many there may be, go on revolving together; but, according to Mohl (p. 4), only the lateral branches of Tamus elephantipes twine, and not the main stem. On the other hand, with a climbing species of Asparagus, the leading shoot alone, and not the branches, revolved and twined; but it should be stated that the plant was not growing vigorously. My plants of Combretum argenteum and C. purpureum made numerous short healthy shoots; but they showed no signs of revolving, and I could not conceive how these plants could be climbers; but at last C. argenteum put forth from the lower part of one of its main branches a thin shoot, 5 or 6 feet in length, differing greatly in appearance from the previous shoots, owing to its leaves being little developed, and this shoot revolved vigorously and twined. So that this plant produces shoots of two kinds. With Periploca Graeca (Palm, p. 43) the uppermost shoots alone twine. Polygonum convolvulus twines only during the middle of the summer (Palm, p. 43, 94); and plants growing vigorously in the autumn show no inclination to climb. The majority of Asclepiadaceae are twiners; but Asclepias nigra only "in fertiliori solo incipit scandere subvolubili caule" (Willdenow, quoted and confirmed by Palm, p. 41). Asclepias vincetoxicum does not regularly twine, but occasionally does so (Palm, p. 42; Mohl, p. 112) when growing under certain conditions. So it is with two species of Ceropegia, as I hear from Prof. Harvey, for these plants in their native dry South African home generally grow erect, from 6 inches to 2 feet in height,--a very few taller specimens showing some inclination to curve; but when cultivated near Dublin, they regularly twined up sticks 5 or 6 feet in height. Most Convolvulaceae are excellent twiners; but in South Africa Ipomoea argyraeoides almost always grows erect and compact, from about 12 to 18 inches in height, one specimen alone in Prof. Harvey's collection showing an evident disposition to twine. On the other hand, seedlings raised near Dublin twined up sticks above 8 feet in height. These facts are remarkable; for there can hardly be a doubt that in the dryer provinces of South Africa these plants have propagated themselves for thousands of generations in an erect condition; and yet they have retained during this whole period the innate power of spontaneously revolving and twining, whenever their shoots become elongated under proper conditions of life. Most of the species of Phaseolus are twiners; but certain varieties of the P. multiflorus produce (Leon, p. 681) two kinds of shoots, some upright and thick, and others thin and twining. I have seen striking instances of this curious case of variability in "Fulmer's dwarf forcing-bean," which occasionally produced a single long twining shoot.

Solanum dulcamara is one of the feeblest and poorest of twiners: it may often be seen growing as an upright bush, and when growing in the midst of a thicket merely scrambles up between the branches without twining; but when, according to Dutrochet (tom. xix. p. 299), it grows near a thin and flexible support, such as the stem of a nettle, it twines round it. I placed sticks round several plants, and vertically stretched strings close to others, and the strings alone were ascended by twining. The stem twines indifferently to the right or left. Some others species of Solanum, and of another genus, viz. Habrothamnus, belonging to the same family, are described in horticultural works as twining plants, but they seem to possess this faculty in a very feeble degree. We may suspect that the species of these two genera have as yet only partially acquired the habit of twining. On the other hand with Tecoma radicans, a member of a family abounding with twiners and tendril-bearers, but which climbs, like the ivy, by the aid of rootlets, we may suspect that a former habit of twining has been lost, for the stem exhibited slight irregular movements which could hardly be accounted for by changes in the action of the light. There is no difficulty in understanding how a spirally twining plant could graduate into a simple root-climber; for the young internodes of Bignonia Tweedyana and of Hoya carnosa revolve and twine, but likewise emit rootlets which adhere to any fitting surface, so that the loss of twining would be no great disadvantage and in some respects an advantage to these species, as they would then ascend their supports in a more direct line. {20}


Plants which climb by the aid of spontaneously revolving and sensitive petioles--Clematis--Tropaeolum--Maurandia, flower-peduncles moving spontaneously and sensitive to a touch--Rhodochiton-- Lophospermum--internodes sensitive--Solanum, thickening of the clasped petioles--Fumaria--Adlumia--Plants which climb by the aid of their produced midribs--Gloriosa--Flagellaria--Nepenthes--Summary on leaf-climbers.

We now come to our second class of climbing plants, namely, those which ascend by the aid of irritable or sensitive organs. For convenience' sake the plants in this class have been grouped under two sub-divisions, namely, leaf-climbers, or those which retain their leaves in a functional condition, and tendril-bearers. But these sub-divisions graduate into each other, as we shall see under Corydalis and the Gloriosa lily.

It has long been observed that several plants climb by the aid of their leaves, either by their petioles (foot-stalks) or by their produced midribs; but beyond this simple fact they have not been described. Palm and Mohl class these plants with those which bear tendrils; but as a leaf is generally a defined object, the present classification, though artificial, has at least some advantages.


Previous Page     Next Page

  1    2    3    4    5    6    7    8    9   10   11   20   27 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything