Schulers Books Online

books - games - software - wallpaper - everything

Bride.Ru

Books Menu

Home
Author Catalog
Title Catalog
Sectioned Catalog

 

- Insectivorous Plants - 10/80 -


length equal to that of the glands. After 2 hrs. the contents of almost all the cells in all the tentacles were broken up into masses of protoplasm. A leaf was immersed in a solution of one part of oxalate of ammonia to 146 of water; and after 24 m. some, but not a conspicuous, change could be seen within the cells beneath the glands. After 47 m. plenty of spherical masses of protoplasm were formed, and these extended down the tentacles for about the length of the glands. This salt, therefore, does not act so quickly as the carbonate. With respect to the citrate of ammonia, a leaf was placed in a little solution of the above strength, and there was not even a trace of aggregation in the cells beneath the glands, until 56 m. had elapsed; but it was well marked after 2 hrs. 20 m. On another occasion a leaf was placed in a stronger solution, of one part of the citrate to 109 of water (4 grs. to 1 oz.), and at the same time another leaf in a solution of the carbonate of the same strength. The glands of the latter were blackened in less than 2 m., and after 1 hr. 45 m. the aggregated masses, which were spherical and very dark-coloured, extended down all the tentacles, for between half and two-thirds of their lengths; whereas in the leaf immersed in the citrate the glands, after 30 m., were of a dark red, and the aggregated masses in the cells beneath them pink and elongated. After 1 hr. 45 m. these masses extended down for only about one-fifth or one-fourth of the length of the tentacles.

Two leaves were placed, each in ten minims of a solution of one part of nitrate of ammonia to 5250 of water (1 gr. to 12 oz.), so that each leaf received 1/576 of a grain (.1124 mgr.). This quantity caused all the tentacles to be inflected, but after 24 hrs. there was only a trace of aggregation. One of these same leaves was then placed in a weak solution of the carbonate, and after 1 hr. 45 m. the tentacles for half their lengths showed an astonishing degree of aggregation. Two other leaves were then placed in a much stronger solution of one part of the nitrate to 146 of water (3 grs. to 1 oz.); in one of these there was no marked change after 3 hrs.; but in the other there was a trace of aggregation after 52 m., and this was plainly marked after 1 hr. 22 m., but even after 2 hrs. 12 m. there was certainly not more aggregation than would have fol- [page 50] lowed from an immersion of from 5 m. to 10 m. in an equally strong solution of the carbonate.

Lastly, a leaf was placed in thirty minims of a solution of one part of phosphate of ammonia to 43,750 of water (1 gr. to 100 oz.), so that it received 1/1600 of a grain (.04079 mgr.); this soon caused the tentacles to be strongly inflected; and after 24 hrs. the contents of the cells were aggregated into oval and irregularly globular masses, with a conspicuous current of protoplasm flowing round the walls. But after so long an interval aggregation would have ensued, whatever had caused inflection.

Only a few other salts, besides those of ammonia, were tried in relation to the process of aggregation. A leaf was placed in a solution of one part of chloride of sodium to 218 of water, and after 1 hr. the contents of the cells were aggregated into small, irregularly globular, brownish masses; these after 2 hrs. were almost disintegrated and pulpy. It was evident that the protoplasm had been injuriously affected; and soon afterwards some of the cells appeared quite empty. These effects differ altogether from those produced by the several salts of ammonia, as well as by various organic fluids, and by inorganic particles placed on the glands. A solution of the same strength of carbonate of soda and carbonate of potash acted in nearly the same manner as the chloride; and here again, after 2 hrs. 30 m., the outer cells of some of the glands had emptied themselves of their brown pulpy contents. We shall see in the eighth chapter that solutions of several salts of soda of half the above strength cause inflection, but do not injure the leaves. Weak solutions of sulphate of quinine, of nicotine, camphor, poison of the cobra, &c., soon induce well-marked aggregation; whereas certain other substances (for instance, a solution of curare) have no such tendency.

Many acids, though much diluted, are poisonous; and though, as will be shown in the eighth chapter, they cause the tentacles to bend, they do not excite true aggregation. Thus leaves were placed in a solution of one part of benzoic acid to 437 of water; and in 15 m. the purple fluid within the cells had shrunk a little from the walls, yet when carefully examined after 1 hr. 20 m., there was no true aggregation; and after 24 hrs. the leaf was evidently dead. Other leaves in iodic acid, diluted to the same degree, showed after 2 hrs. 15 m. the same shrunken appearance of the purple fluid within the cells; and these, after 6 hrs. 15 m., were seen under a high power to be filled with excessively minute spheres of dull reddish protoplasm, [page 51] which by the next morning, after 24 hrs., had almost disappeared, the leaf being evidently dead. Nor was there any true aggregation in leaves immersed in propionic acid of the same strength; but in this case the protoplasm was collected in irregular masses towards the bases of the lower cells of the tentacles.

A filtered infusion of raw meat induces strong aggregation, but not very quickly. In one leaf thus immersed there was a little aggregation after 1 hr. 20 m., and in another after 1 hr. 50 m. With other leaves a considerably longer time was required: for instance, one immersed for 5 hrs. showed no aggregation, but was plainly acted on in 5 m.; when placed in a few drops of a solution of one part of carbonate of ammonia to 146 of water. Some leaves were left in the infusion for 24 hrs., and these became aggregated to a wonderful degree, so that the inflected tentacles presented to the naked eye a plainly mottled appearance. The little masses of purple protoplasm were generally oval or beaded, and not nearly so often spherical as in the case of leaves subjected to carbonate of ammonia. They underwent incessant changes of form; and the current of colourless protoplasm round the walls was conspicuously plain after an immersion of 25 hrs. Raw meat is too powerful a stimulant, and even small bits generally injure, and sometimes kill, the leaves to which they are given: the aggregated masses of protoplasm become dingy or almost colourless, and present an unusual granular appearance, as is likewise the case with leaves which have been immersed in a very strong solution of carbonate of ammonia. A leaf placed in milk had the contents of its cells somewhat aggregated in 1 hr. Two other leaves, one immersed in human saliva for 2 hrs. 30 m., and another in unboiled white of egg for 1 hr. 30 m., were not action on in this manner; though they undoubtedly would have been so, had more time been allowed. These same two leaves, on being afterwards placed in a solution of carbonate of ammonia (3 grs. to 1 oz.), had their cells aggregated, the one in 10 m. and the other in 5 m.

Several leaves were left for 4 hrs. 30 m. in a solution of one part of white sugar to 146 of water, and no aggregation ensued; on being placed in a solution of this same strength of carbonate of ammonia, they were acted on in 5 m.; as was likewise a leaf which had been left for 1 hr. 45 m. in a moderately thick solution of gum arabic. Several other leaves were immersed for some hours in denser solutions of sugar, gum, and starch, and they had the contents of their cells greatly aggregated. This [page 52] effect may be attributed to exosmose; for the leaves in the syrup became quite flaccid, and those in the gum and starch somewhat flaccid, with their tentacles twisted about in the most irregular manner, the longer ones like corkscrews. We shall hereafter see that solutions of these substances, when placed on the discs of leaves, do not incite inflection. Particles of soft sugar were added to the secretion round several glands and were soon dissolved, causing a great increase of the secretion, no doubt by exosmose; and after 24 hrs. the cells showed a certain amount of aggregation, though the tentacles were not inflected. Glycerine causes in a few minutes well-pronounced aggregation, commencing as usual within the glands and then travelling down the tentacles; and this I presume may be attributed to the strong attraction of this substance for water. Immersion for several hours in water causes some degree of aggregation. Twenty leaves were first carefully examined, and re-examined after having been left immersed in distilled water for various periods, with the following results. It is rare to find even a trace of aggregation until 4 or 5 and generally not until several more hours have elapsed. When however a leaf becomes quickly inflected in water, as sometimes happens, especially during very warm weather, aggregation may occur in little over 1 hr. In all cases leaves left in water for more than 24 hrs. have their glands blackened, which shows that their contents are aggregated; and in the specimens which were carefully examined, there was fairly well-marked aggregation in the upper cells of the pedicels. These trials were made with cut off-leaves, and it occurred to me that this circumstance might influence the result, as the footstalks would not perhaps absorb water quickly enough to supply the glands as they continued to secrete. But this view was proved erroneous, for a plant with uninjured roots, bearing four leaves, was submerged in distilled water for 47 hrs., and the glands were blackened, though the tentacles were very little inflected. In one of these leaves there was only a slight degree of aggregation in the tentacles; in the second rather more, the purple contents of the cells being a little separated from the walls; in the third and fourth, which were pale leaves, the aggregation in the upper parts of the pedicels was well marked. In these leaves the little masses of protoplasm, many of which were oval, slowly changed their forms and positions; so that a submergence for 47 hrs. had not killed the protoplasm. In a previous trial with a submerged plant, the tentacles were not in the least inflected. [page 53]

Heat induces aggregation. A leaf, with the cells of the tentacles containing only homogeneous fluid, was waved about for 1 m. in water at 130o Fahr. (54o.4 Cent.) and was then examined under the microscope as quickly as possible, that is in 2 m. or 3 m.; and by this time the contents of the cells had undergone some degree of aggregation. A second leaf was waved for 2 m. in water at 125o (51o.6 Cent.) and quickly examined as before; the tentacles were well inflected; the purple fluid in all the cells had shrunk a little from the walls, and contained many oval and elongated masses of protoplasm, with a few minute spheres. A third leaf was left in water at 125o, until it cooled, and when examined after 1 hr. 45 m., the inflected tentacles showed some aggregation, which became after 3 hrs. more strongly marked, but did not subsequently increase. Lastly, a leaf was waved for 1 m. in water at 120o (48o.8 Cent.) and then left for 1 hr. 26 m. in cold water; the tentacles were but little inflected, and there was only here and there a trace of aggregation. In all these and other trials with warm water the protoplasm showed much less tendency to aggregate into spherical masses than when excited by carbonate of ammonia.

Redissolution of the Aggregated Masses of Protoplasm.--As soon as tentacles which have clasped an insect or any inorganic object, or have been in any way excited, have fully re-expanded, the aggregated masses of protoplasm are redissolved and disappear; the cells being now refilled with homogeneous purple fluid as they were before the tentacles were inflected. The process of redissolution in all cases commences at the bases of the tentacles, and proceeds up them towards the glands. In old leaves, however, especially in those which have been several times in action, the protoplasm in the uppermost cells of the pedicels remains in a permanently more or less aggregated condition. In order to observe the process of redissolution, the following observations were made: a leaf was left for 24 hrs. in a little solution of one part of carbonate of ammonia to 218 of water, and the protoplasm was as usual aggregated into numberless purple spheres, which were incessantly changing their forms. The leaf was then washed and placed in distilled water, and after 3 hrs. 15 m. some few of the spheres began to show by their less clearly defined edges signs of redissolution. After 9 hrs. many of them had become elongated, and the surrounding fluid in the cells was slightly more coloured, showing plainly that redissolution had commenced. After 24 hrs., though many cells still contained spheres, here and there one [page 54] could be seen filled with purple fluid, without a vestige of aggregated


Insectivorous Plants - 10/80

Previous Page     Next Page

  1    5    6    7    8    9   10   11   12   13   14   15   20   30   40   50   60   70   80 

Schulers Books Home



 Games Menu

Home
Balls
Battleship
Buzzy
Dice Poker
Memory
Mine
Peg
Poker
Tetris
Tic Tac Toe

Google
 
Web schulers.com
 

Schulers Books Online

books - games - software - wallpaper - everything