Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog


- The Story Of Germ Life - 5/26 -

greater quantity than in standing water. This is simply because running streams are being constantly supplied with water which has been washing the surface of the country and thus carrying off all surface accumulations. Lakes or reservoirs, however, by standing quiet allow the bacteria to settle to the bottom, and the water thus gets somewhat purified. They are in the air, especially in regions of habitation. Their numbers are greatest near the surface of the ground, and decrease in the upper strata of air. Anything which tends to raise dust increases the number of bacteria in the air greatly, and the dust and emanations from the clothes of people crowded in a close room fill the air with bacteria in very great numbers. They are found in excessive abundance in every bit of decaying matter wherever it may be. Manure heaps, dead bodies of animals, decaying trees, filth and slime and muck everywhere are filled with them, for it is in such places that they find their best nourishment. The bodies of animals contain them in the mouth, stomach, and intestine in great numbers, and this is, of course, equally true of man. On the surface of the body they cling in great quantity; attached to the clothes, under the finger nails, among the hairs, in every possible crevice or hiding place in the skin, and in all secretions. They do not, however, occur in the tissues of a healthy individual, either in the blood, muscle, gland, or any other organ. Secretions, such as milk, urine, etc., always contain them, however, since the bacteria do exist in the ducts of the glands which conduct the secretions to the exterior, and thus, while the bacteria are never in the healthy gland itself, they always succeed in contaminating the secretion as it passes to the exterior. Not only higher animals, but the lower animals also have their bodies more or less covered with bacteria. Flies have them on their feet, bees among their hairs, etc.

In short, wherever on the face of Nature there is a lodging place for dust there will be found bacteria. In most of these localities they are dormant, or at least growing only a little. The bacteria clinging to the dry hair can grow but little, if at all, and those in pure water multiply very little. When dried as dust they are entirely dormant. But each individual bacterium or spore has the potential power of multiplication already noticed, and as soon as it by accident falls upon a place where there is food and moisture it will begin to multiply. Everywhere in Nature, then, exists this group of organisms with its almost inconceivable power of multiplication, but a power held in check by lack of food. Furnish them with food and their potential powers become actual. Such food is provided by the dead bodies of animals or plants, or by animal secretions, or from various other sources. The bacteria which are fortunate enough to get furnished with such food material continue to feed upon it until the food supply is exhausted or their growth is checked in some other way. They may be regarded, therefore, as a constant and universal power usually held in check. With their universal presence and their powers of producing chemical changes in food material, they are ever ready to produce changes in the face of Nature, and to these changes we will now turn.



The foods upon which bacteria live are in endless variety, almost every product of animal or vegetable life serving to supply their needs. Some species appear to require somewhat definite kinds of food, and have therefore rather narrow conditions of life, but the majority may live upon a great variety of organic compounds. As they consume the material which serves them as food they produce chemical changes therein. These changes are largely of a nature that the chemist knows as decomposition changes. By this is meant that the bacteria, seizing hold of ingredients which constitute their food, break them to pieces chemically. The molecule of the original food matter is split into simpler molecules, and the food is thus changed in its chemical nature. As a result, the compounds which appear in the decomposing solution are commonly simpler than the original food molecules. Such products are in general called decomposition products, or sometimes cleavage products. Sometimes, however, the bacteria have, in addition to their power of pulling their food to pieces, a further power of building other compounds out of the fragments, thus building up as well as pulling down. But, however they do it, bacteria when growing in any food material have the power of giving rise to numerous products which did not exist in the food mass before. Because of their extraordinary powers of reproduction they are capable of producing these changes very rapidly and can give rise in a short time to large amounts of the peculiar products of their growth.

It is to these powers of producing chemical changes in their food that bacteria owe all their importance in the world. Their power of chemically destroying the food products is in itself of no little importance, but the products which arise as the result of this series of chemical changes are of an importance in the world which we are only just beginning to appreciate. In our attempt to outline the agency which bacteria play in our industries and in natural processes as well, we shall notice that they are sometimes of value simply for their power of producing decomposition; but their greatest value lies in the fact that they are important agents because of the products of their life.

We may notice, in the first place, that in the arts there are several industries which may properly be classed together as maceration industries, all of which are based upon the decomposition powers of bacteria. Hardly any animal or vegetable substance is able to resist their softening influence, and the artisan relies upon this power in several different directions.


Linen.--Linen consists of certain woody fibres of the stem of the flax. The flax stem is not made up entirely of the valuable fibres, but largely of more brittle wood fibres, which are of no use. The valuable fibres are, however, closely united with the wood and with each other in such an intimate fashion that it is impossible to separate them by any mechanical means. The whole cellular substance of the stem is bound together by some cementing materials which hold it in a compact mass, probably a salt of calcium and pectinic acid. The art of preparing flax is a process of getting rid of the worthless wood fibres and preserving the valuable, longer, tougher, and more valuable fibres, which are then made into linen. But to separate them it is necessary first to soften the whole tissue. This is always done through the aid of bacteria. The flax stems, after proper preparation, are exposed to the action of moisture and heat, which soon develops a rapid bacterial growth. Sometimes this is done by simply exposing the flax to the dew and rain and allowing it to lie thus exposed for some time. By another process the stems are completely immersed in water and allowed to remain for ten to fourteen days. By a third process the water in which the flax is immersed is heated from 75 degrees to 90 degrees F., with the addition of certain chemicals, for some fifty to sixty hours. In all cases the effect is the same. The moisture and the heat cause a growth of bacteria which proceeds with more or less rapidity according to the temperature and other conditions. A putrefactive fermentation is thus set up which softens the gummy substance holding the fibres together. The process is known as "retting," and after it is completed the fibres are easily isolated from each other. A purely mechanical process now easily separates the valuable fibres from the wood fibres. The whole process is a typical fermentation. A disagreeable odour arises from the fermenting flax, and the liquid after the fermentation is filled with products which make valuable manure. The process has not been scientifically studied until very recently. The bacillus which produces the "retting" is known now, however, and it has been shown that the "retting" is a process of decomposition of the pectin cement. No method of separating the linen fibres in the flax from the wood fibres has yet been devised which dispenses with the aid of bacteria.

Jute and Hemp.--Almost exactly the same use is made of bacterial action in the manufacture of jute und hemp. The commercial aspect of the jute industry has grown to be a large one, involving many millions of dollars. Like linen, jute is a fibre of the inner bark of a plant, and is mixed in the bark with a mass of other useless fibrous material. As in the case of linen, a fermentation by bacteria is depended upon as a means of softening the material so that the fibres can be disassociated. The process is called "retting," as in the linen manufacture. The details of the process are somewhat different. The jute is commonly fermented in tanks of stagnant water, although sometimes it is allowed to soak in river water for a sufficient length of time to produce the softening. After the fermentation is thus started the jute fibre is separated from the wood, and is of a sufficient flexibility and toughness to be woven into sacking, carpets, curtains, table covers, and other coarse cloth.

Practically the same method is used in separating the tough fibres of the hemp. The hemp plant contains some long flexible fibres with others of no value, and bacterial fermentation is relied upon to soften the tissues so that they may be separated.

Cocoanut fibre, a somewhat similar material is obtained from the husk of the cocoanut by the same means. The unripened husk is allowed to steep and ferment in water for a long time, six months or a year being required. By this time the husk has become so softened that it can be beaten until the fibres separate and can be removed. They are subsequently made into a number of coarse articles, especially valuable for their toughness. Door mats, brushes, ships' fenders, etc., are illustrations of the sort of articles made from them.

In each of these processes the fermentation must have a tendency to soften the desired fibres as well as the connecting substance. Putrefaction attacks all kinds of vegetable tissue, and if this "retting" continues too long the desired fibre is decidedly injured by the softening effect of the fermentation. It is quite probable that, even as commonly carried on, the fermentation has some slight injurious effect upon the fibre, and that if some purely mechanical means could be devised for separating the fibre from the wood it would produce a better material. But such mechanical means has not been devised, and at present a putrefactive fermentation appears to be the only practical method of separating the fibres.

Sponges.--A somewhat similar use is made of bacteria in the commercial preparation of sponges. The sponge of commerce is simply the fibrous skeleton of a marine animal. When it is alive this skeleton is completely filled with the softer parts of the animal, and to fit the sponge for use this softer organic material must be got rid of. It is easily accomplished by rotting. The fresh sponges are allowed to stand in the warm sun and very rapidly decay. Bacteria make their way into the sponge and

The Story Of Germ Life - 5/26

Previous Page     Next Page

  1    2    3    4    5    6    7    8    9   10   20   26 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything