Schulers Books Online

books - games - software - wallpaper - everything

Bride.Ru

Books Menu

Home
Author Catalog
Title Catalog
Sectioned Catalog

 

- Five of Maxwell's Papers - 4/8 -


different scientific position from those theories of molecular action which are formed by investing the molecule with an arbitrary system of central forces invented expressly to account for the observed phenomena.

In the vortex theory we have nothing arbitrary, no central forces or occult properties of any other kind. We have nothing but matter and motion, and when the vortex is once started its properties are all determined from the original impetus, and no further assumptions are possible.

Even in the present undeveloped state of the theory, the contemplation of the individuality and indestructibility of a ring-vortex in a perfect fluid cannot fail to disturb the commonly received opinion that a molecule, in order to be permanent, must be a very hard body.

In fact one of the first conditions which a molecule must fulfil is, apparently, inconsistent with its being a single hard body. We know from those spectroscopic researches which have thrown so much light on different branches of science, that a molecule can be set into a state of internal vibration, in which it gives off to the surrounding medium light of definite refrangibility--light, that is, of definite wave-length and definite period of vibration. The fact that all the molecules (say, of hydrogen) which we can procure for our experiments, when agitated by heat or by the passage of an electric spark, vibrate precisely in the same periodic time, or, to speak more accurately, that their vibrations are composed of a system of simple vibrations having always the same periods, is a very remarkable fact.

I must leave it to others to describe the progress of that splendid series of spectroscopic discoveries by which the chemistry of the heavenly bodies has been brought within the range of human inquiry. I wish rather to direct your attention to the fact that, not only has every molecule of terrestrial hydrogen the same system of periods of free vibration, but that the spectroscopic examination of the light of the sun and stars shews that, in regions the distance of which we can only feebly imagine, there are molecules vibrating in as exact unison with the molecules of terrestrial hydrogen as two tuning-forks tuned to concert pitch, or two watches regulated to solar time.

Now this absolute equality in the magnitude of quantities, occurring in all parts of the universe, is worth our consideration.

The dimensions of individual natural bodies are either quite indeterminate, as in the case of planets, stones, trees, &c., or they vary within moderate limits, as in the case of seeds, eggs, &c.; but even in these cases small quantitative differences are met with which do not interfere with the essential properties of the body.

Even crystals, which are so definite in geometrical form, are variable with respect to their absolute dimensions.

Among the works of man we sometimes find a certain degree of uniformity.

There is a uniformity among the different bullets which are cast in the same mould, and the different copies of a book printed from the same type.

If we examine the coins, or the weights and measures, of a civilized country, we find a uniformity, which is produced by careful adjustment to standards made and provided by the state. The degree of uniformity of these national standards is a measure of that spirit of justice in the nation which has enacted laws to regulate them and appointed officers to test them.

This subject is one in which we, as a scientific body, take a warm interest; and you are all aware of the vast amount of scientific work which has been expended, and profitably expended, in providing weights and measures for commercial and scientific purposes.

The earth has been measured as a basis for a permanent standard of length, and every property of metals has been investigated to guard against any alteration of the material standards when made. To weigh or measure any thing with modern accuracy, requires a course of experiment and calculation in which almost every branch of physics and mathematics is brought into requisition.

Yet, after all, the dimensions of our earth and its time of rotation, though, relatively to our present means of comparison, very permanent, are not so by any physical necessity. The earth might contract by cooling, or it might be enlarged by a layer of meteorites falling on it, or its rate of revolution might slowly slacken, and yet it would continue to be as much a planet as before.

But a molecule, say of hydrogen, if either its mass or its time of vibration were to be altered in the least, would no longer be a molecule of hydrogen.

If, then, we wish to obtain standards of length, time, and mass which shall be absolutely permanent, we must seek them not in the dimensions, or the motion, or the mass of our planet, but in the wave-length, the period of vibration, and the absolute mass of these imperishable and unalterable and perfectly similar molecules.

When we find that here, and in the starry heavens, there are innumerable multitudes of little bodies of exactly the same mass, so many, and no more, to the grain, and vibrating in exactly the same time, so many times, and no more, in a second, and when we reflect that no power in nature can now alter in the least either the mass or the period of any one of them, we seem to have advanced along the path of natural knowledge to one of those points at which we must accept the guidance of that faith by which we understand that "that which is seen was not made of things which do appear."

One of the most remarkable results of the progress of molecular science is the light it has thrown on the nature of irreversible processes--processes, that is, which always tend towards and never away from a certain limiting state. Thus, if two gases be put into the same vessel, they become mixed, and the mixture tends continually to become more uniform. If two unequally heated portions of the same gas are put into the vessel, something of the kind takes place, and the whole tends to become of the same temperature. If two unequally heated solid bodies be placed in contact, a continual approximation of both to an intermediate temperature takes place.

In the case of the two gases, a separation may be effected by chemical means; but in the other two cases the former state of things cannot be restored by any natural process.

In the case of the conduction or diffusion of heat the process is not only irreversible, but it involves the irreversible diminution of that part of the whole stock of thermal energy which is capable of being converted into mechanical work.

This is Thomson's theory of the irreversible dissipation of energy, and it is equivalent to the doctrine of Clausius concerning the growth of what he calls Entropy.

The irreversible character of this process is strikingly embodied in Fourier's theory of the conduction of heat, where the formulae themselves indicate, for all positive values of the time, a possible solution which continually tends to the form of a uniform diffusion of heat.

But if we attempt to ascend the stream of time by giving to its symbol continually diminishing values, we are led up to a state of things in which the formula has what is called a critical value; and if we inquire into the state of things the instant before, we find that the formula becomes absurd.

We thus arrive at the conception of a state of things which cannot be conceived as the physical result of a previous state of things, and we find that this critical condition actually existed at an epoch not in the utmost depths of a past eternity, but separated from the present time by a finite interval.

This idea of a beginning is one which the physical researches of recent times have brought home to us, more than any observer of the course of scientific thought in former times would have had reason to expect.

But the mind of man is not, like Fourier's heated body, continually settling down into an ultimate state of quiet uniformity, the character of which we can already predict; it is rather like a tree, shooting out branches which adapt themselves to the new aspects of the sky towards which they climb, and roots which contort themselves among the strange strata of the earth into which they delve. To us who breathe only the spirit of our own age, and know only the characteristics of contemporary thought, it is as impossible to predict the general tone of the science of the future as it is to anticipate the particular discoveries which it will make.

Physical research is continually revealing to us new features of natural processes, and we are thus compelled to search for new forms of thought appropriate to these features. Hence the importance of a careful study of those relations between mathematics and Physics which determine the conditions under which the ideas derived from one department of physics may be safely used in forming ideas to be employed in a new department.

The figure of speech or of thought by which we transfer the language and ideas of a familiar science to one with which we are less acquainted may be called Scientific Metaphor.

Thus the words Velocity, Momentum, Force, &c. have acquired certain precise meanings in Elementary Dynamics. They are also employed in the Dynamics of a Connected System in a sense which, though perfectly analogous to the elementary sense, is wider and more general.

These generalized forms of elementary ideas may be called metaphorical terms in the sense in which every abstract term is metaphorical. The characteristic of a truly scientific system of metaphors is that each term in its metaphorical use retains all the formal relations to the other terms of the system which it had in its original use. The method is then truly scientific--that is, not only a legitimate product of science, but capable of generating science in its turn.

There are certain electrical phenomena, again, which are connected together by relations of the same form as those which connect dynamical phenomena. To apply to these the phrases of dynamics with proper distinctions and provisional reservations is an example of a metaphor of a bolder kind; but it is a legitimate metaphor if it conveys a true idea of the electrical relations to those who have been already trained in dynamics.

Suppose, then, that we have successfully introduced certain ideas belonging to an elementary science by applying them metaphorically to some new class of phenomena. It becomes an important philosophical question to determine in what degree the applicability of the old


Five of Maxwell's Papers - 4/8

Previous Page     Next Page

  1    2    3    4    5    6    7    8 

Schulers Books Home



 Games Menu

Home
Balls
Battleship
Buzzy
Dice Poker
Memory
Mine
Peg
Poker
Tetris
Tic Tac Toe

Google
 
Web schulers.com
 

Schulers Books Online

books - games - software - wallpaper - everything