Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog


- Familiar Letters on Chemistry - 10/21 -

for, at the temperature of the body, the affinity of hydrogen for oxygen far surpasses that of carbon for the same element.

We know, in fact, that the graminivora expire a volume of carbonic acid equal to that of the oxygen inspired, while the carnivora, the only class of animals whose food contains fat, inspire more oxygen than is equal in volume to the carbonic acid expired. Exact experiments have shown, that in many cases only half the volume of oxygen is expired in the form of carbonic acid. These observations cannot be gainsaid, and are far more convincing than those arbitrary and artificially produced phenomena, sometimes called experiments; experiments which, made as too often they are, without regard to the necessary and natural conditions, possess no value, and may be entirely dispensed with; especially when, as in the present case, Nature affords the opportunity for observation, and when we make a rational use of that opportunity.

In the progress of starvation, however, it is not only the fat which disappears, but also, by degrees all such of the solids as are capable of being dissolved. In the wasted bodies of those who have suffered starvation, the muscles are shrunk and unnaturally soft, and have lost their contractibility; all those parts of the body which were capable of entering into the state of motion have served to protect the remainder of the frame from the destructive influence of the atmosphere. Towards the end, the particles of the brain begin to undergo the process of oxidation, and delirium, mania, and death close the scene; that is to say, all resistance to the oxidising power of the atmospheric oxygen ceases, and the chemical process of eremacausis, or decay, commences, in which every part of the body, the bones excepted, enters into combination with oxygen.

The time which is required to cause death by starvation depends on the amount of fat in the body, on the degree of exercise, as in labour or exertion of any kind, on the temperature of the air, and finally, on the presence or absence of water. Through the skin and lungs there escapes a certain quantity of water, and as the presence of water is essential to the continuance of the vital motions, its dissipation hastens death. Cases have occurred, in which a full supply of water being accessible to the sufferer, death has not occurred till after the lapse of twenty days. In one case, life was sustained in this way for the period of sixty days.

In all chronic diseases death is produced by the same cause, namely, the chemical action of the atmosphere. When those substances are wanting, whose function in the organism is to support the process of respiration, when the diseased organs are incapable of performing their proper function of producing these substances, when they have lost the power of transforming the food into that shape in which it may, by entering into combination with the oxygen of the air, protect the system from its influence, then, the substance of the organs themselves, the fat of the body, the substance of the muscles, the nerves, and the brain, are unavoidably consumed.

The true cause of death in these cases is the respiratory process, that is, the action of the atmosphere.

A deficiency of food, and a want of power to convert the food into a part of the organism, are both, equally, a want of resistance; and this is the negative cause of the cessation of the vital process. The flame is extinguished, because the oil is consumed; and it is the oxygen of the air which has consumed it.

In many diseases substances are produced which are incapable of assimilation. By the mere deprivation of food, these substances are removed from the body without leaving a trace behind; their elements have entered into combination with the oxygen of the air.

From the first moment that the function of the lungs or of the skin is interrupted or disturbed, compounds, rich in carbon, appear in the urine, which acquires a brown colour. Over the whole surface of the body oxygen is absorbed, and combines with all the substances which offer no resistance to it. In those parts of the body where the access of oxygen is impeded; for example, in the arm-pits, or in the soles of the feet, peculiar compounds are given out, recognisable by their appearance, or by their odour. These compounds contain much carbon.

Respiration is the falling weight--the bent spring, which keeps the clock in motion; the inspirations and expirations are the strokes of the pendulum which regulate it. In our ordinary time-pieces, we know with mathematical accuracy the effect produced on their rate of going, by changes in the length of the pendulum, or in the external temperature. Few, however, have a clear conception of the influence of air and temperature on the health of the human body; and yet the research into the conditions necessary to keep it in the normal state is not more difficult than in the case of a clock.


My dear Sir,

Having attempted in my last letter to explain to you the simple and admirable office subserved by the oxygen of the atmosphere in its combination with carbon in the animal body, I will now proceed to present you with some remarks upon those materials which sustain its mechanisms in motion, and keep up their various functions,--namely, the Aliments.

If the increase in mass in an animal body, the development and reproduction of its organs depend upon the blood, then those substances only which are capable of being converted into blood can be properly regarded as nourishment. In order then to ascertain what parts of our food are nutritious, we must compare the composition of the blood with the composition of the various articles taken as food.

Two substances require especial consideration as the chief ingredients of the blood; one of these separates immediately from the blood when it is withdrawn from the circulation.

It is well known that in this case blood coagulates, and separates into a yellowish liquid, the serum of the blood, and a gelatinous mass, which adheres to a rod or stick in soft, elastic fibres, when coagulating blood is briskly stirred. This is the fibrine of the blood, which is identical in all its properties with muscular fibre, when the latter is purified from all foreign matters.

The second principal ingredient of the blood is contained in the serum, and gives to this liquid all the properties of the white of eggs, with which it is indeed identical. When heated, it coagulates into a white elastic mass, and the coagulating substance is called albumen.

Fibrine and albumen, the chief ingredients of blood, contain, in all, seven chemical elements, among which nitrogen, phosphorus, and sulphur are found. They contain also the earth of bones. The serum retains in solution sea salt and other salts of potash and soda, in which the acids are carbonic, phosphoric, and sulphuric acids. The globules of the blood contain fibrine and albumen, along with a red colouring matter, in which iron is a constant element. Besides these, the blood contains certain fatty bodies in small quantity, which differ from ordinary fats in several of their properties.

Chemical analysis has led to the remarkable result, that fibrine and albumen contain the same organic elements united in the same proportion,--i.e., that they are isomeric, their chemical composition--the proportion of their ultimate elements--being identical. But the difference of their external properties shows that the particles of which they are composed are arranged in a different order. (See Letter V).

This conclusion has lately been beautifully confirmed by a distinguished physiologist (Denis), who has succeeded in converting fibrine into albumen, that is, in giving it the solubility, and coagulability by heat, which characterise the white of egg.

Fibrine and albumen, besides having the same composition, agree also in this, that both dissolve in concentrated muriatic acid, yielding a solution of an intense purple colour. This solution, whether made with fibrine or albumen, has the very same re-actions with all substances yet tried.

Both albumen and fibrine, in the process of nutrition, are capable of being converted into muscular fibre, and muscular fibre is capable of being reconverted into blood. These facts have long been established by physiologists, and chemistry has merely proved that these metamorphoses can be accomplished under the influence of a certain force, without the aid of a third substance, or of its elements, and without the addition of any foreign element, or the separation of any element previously present in these substances.

If we now compare the composition of all organised parts with that of fibrine and albumen, the following relations present themselves:-

All parts of the animal body which have a decided shape, which form parts of organs, contain nitrogen. No part of an organ which possesses motion and life is destitute of nitrogen; all of them contain likewise carbon and the elements of water; the latter, however, in no case in the proportion to form water.

The chief ingredients of the blood contain nearly 17 per cent. of nitrogen, and from numerous analyses it appears that no part of an organ contains less than 17 per cent. of nitrogen.

The most convincing experiments and observations have proved that the animal body is absolutely incapable of producing an elementary body, such as carbon or nitrogen, out of substances which do not contain it; and it obviously follows, that all kinds of food fit for the production either of blood, or of cellular tissue, membranes, skin, hair, muscular fibre, &c., must contain a certain amount of nitrogen, because that element is essential to the composition of the above-named organs; because the organs cannot create it from the other elements presented to them; and, finally, because no nitrogen is absorbed from the atmosphere in the vital process.

The substance of the brain and nerves contains a large quantity of albumen, and, in addition to this, two peculiar fatty acids, distinguished from other fats by containing phosphorus (phosphoric acid?). One of these contains nitrogen (Fremy).

Finally, water and common fat are those ingredients of the body

Familiar Letters on Chemistry - 10/21

Previous Page     Next Page

  1    5    6    7    8    9   10   11   12   13   14   15   20   21 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything