Schulers Books Online

books - games - software - wallpaper - everything

Bride.Ru

Books Menu

Home
Author Catalog
Title Catalog
Sectioned Catalog

 

- Familiar Letters on Chemistry - 5/21 -


kept continually moist by manual labour. For this purpose, meadow land, eligibly situated, was essential. Now a single establishment near Glasgow bleaches 1400 pieces of cotton daily, throughout the year. What an enormous capital would be required to purchase land for this purpose! How greatly would it increase the cost of bleaching to pay interest upon this capital, or to hire so much land in England! This expense would scarcely have been felt in Germany. Besides the diminished expense, the cotton stuffs bleached with chlorine suffer less in the hands of skilful workmen than those bleached in the sun; and already the peasantry in some parts of Germany have adopted it, and find it advantageous.

Another use to which cheap muriatic acid is applied, is the manufacture of glue from bones. Bone contains from 30 to 36 per cent. of earthy matter--chiefly phosphate of lime, and the remainder is gelatine. When bones are digested in muriatic acid they become transparent and flexible like leather, the earthy matter is dissolved, and after the acid is all carefully washed away, pieces of glue of the same shape as the bones remain, which are soluble in hot water and adapted to all the purposes of ordinary glue, without further preparation.

Another important application of sulphuric acid may be adduced; namely, to the refining of silver and the separation of gold, which is always present in some proportion in native silver. Silver, as it is usually obtained from mines in Europe, contains in 16 ounces, 6 to 8 ounces of copper. When used by the silversmith, or in coining, 16 ounces must contain in Germany 13 ounces of silver, in England about 14 1/2. But this alloy is always made artificially by mixing pure silver with the due proportion of the copper; and for this purpose the silver must be obtained pure by the refiner. This he formerly effected by amalgamation, or by roasting it with lead; and the cost of this process was about 2l. for every hundred-weight of silver. In the silver so prepared, about 1/1200 to 1/2000th part of gold remained; to effect the separation of this by nitrio-hydrochloric acid was more expensive than the value of the gold; it was therefore left in utensils, or circulated in coin, valueless. The copper, too, of the native silver was no use whatever. But the 1/1000th part of gold, being about one and a half per cent. of the value of the silver, now covers the cost of refining, and affords an adequate profit to the refiner; so that he effects the separation of the copper, and returns to his employer the whole amount of the pure silver, as well as the copper, without demanding any payment: he is amply remunerated by that minute portion of gold. The new process of refining is a most beautiful chemical operation: the granulated metal is boiled in concentrated sulphuric acid, which dissolves both the silver and the copper, leaving the gold nearly pure, in the form of a black powder. The solution is then placed in a leaden vessel containing metallic copper; this is gradually dissolved, and the silver precipitated in a pure metallic state. The sulphate of copper thus formed is also a valuable product, being employed in the manufacture of green and blue pigments.

Other immediate results of the economical production of sulphuric acid, are the general employment of phosphorus matches, and of stearine candles, that beautiful substitute for tallow and wax. Twenty-five years ago, the present prices and extensive applications of sulphuric and muriatic acids, of soda, phosphorus, &c., would have been considered utterly impossible. Who is able to foresee what new and unthought-of chemical productions, ministering to the service and comforts of mankind, the next twenty-five years may produce?

After these remarks you will perceive that it is no exaggeration to say, we may fairly judge of the commercial prosperity of a country from the amount of sulphuric acid it consumes. Reflecting upon the important influence which the price of sulphur exercises upon the cost of production of bleached and printed cotton stuffs, soap, glass, &c., and remembering that Great Britain supplies America, Spain, Portugal, and the East, with these, exchanging them for raw cotton, silk, wine, raisins, indigo, &c., &c., we can understand why the English Government should have resolved to resort to war with Naples, in order to abolish the sulphur monopoly, which the latter power attempted recently to establish. Nothing could be more opposed to the true interests of Sicily than such a monopoly; indeed, had it been maintained a few years, it is highly probable that sulphur, the source of her wealth, would have been rendered perfectly valueless to her. Science and industry form a power to which it is dangerous to present impediments. It was not difficult to perceive that the issue would be the entire cessation of the exportation of sulphur from Sicily. In the short period the sulphur monopoly lasted, fifteen patents were taken out for methods to obtain back the sulphuric acid used in making soda. Admitting that these fifteen experiments were not perfectly successful, there can be no doubt it would ere long have been accomplished. But then, in gypsum, (sulphate of lime), and in heavy-spar, (sulphate of barytes), we possess mountains of sulphuric acid; in galena, (sulphate of lead), and in iron pyrites, we have no less abundance of sulphur. The problem is, how to separate the sulphuric acid, or the sulphur, from these native stores. Hundreds of thousands of pounds weight of sulphuric acid were prepared from iron pyrites, while the high price of sulphur consequent upon the monopoly lasted. We should probably ere long have triumphed over all difficulties, and have separated it from gypsum. The impulse has been given, the possibility of the process proved, and it may happen in a few years that the inconsiderate financial speculation of Naples may deprive her of that lucrative commerce. In like manner Russia, by her prohibitory system, has lost much of her trade in tallow and potash. One country purchases only from absolute necessity from another, which excludes her own productions from her markets. Instead of the tallow and linseed oil of Russia, Great Britain now uses palm oil and cocoa-nut oil of other countries. Precisely analogous is the combination of workmen against their employers, which has led to the construction of many admirable machines for superseding manual labour. In commerce and industry every imprudence carries with it its own punishment; every oppression immediately and sensibly recoils upon the head of those from whom it emanates.

LETTER IV

My dear Sir,

One of the most influential causes of improvement in the social condition of mankind is that spirit of enterprise which induces men of capital to adopt and carry out suggestions for the improvement of machinery, the creation of new articles of commerce, or the cheaper production of those already in demand; and we cannot but admire the energy with which such men devote their talents, their time, and their wealth, to realise the benefits of the discoveries and inventions of science. For even when these are expended upon objects wholly incapable of realisation,--nay, even when the idea which first gave the impulse proves in the end to be altogether impracticable or absurd, immediate good to the community generally ensues; some useful and perhaps unlooked-for result flows directly, or springs ultimately, from exertions frustrated in their main design. Thus it is also in the pursuit of science. Theories lead to experiments and investigations; and he who investigates will scarcely ever fail of being rewarded by discoveries. It may be, indeed, the theory sought to be established is entirely unfounded in nature; but while searching in a right spirit for one thing, the inquirer may be rewarded by finding others far more valuable than those which he sought.

At the present moment, electro-magnetism, as a moving power, is engaging great attention and study; wonders are expected from its application to this purpose. According to the sanguine expectations of many persons, it will shortly be employed to put into motion every kind of machinery, and amongst other things it will be applied to impel the carriages of railroads, and this at so small a cost, that expense will no longer be matter of consideration. England is to lose her superiority as a manufacturing country, inasmuch as her vast store of coals will no longer avail her as an economical source of motive power. "We," say the German cultivators of this science, "have cheap zinc, and, how small a quantity of this metal is required to turn a lathe, and consequently to give motion to any kind of machinery!"

Such expectations may be very attractive, and yet they are altogether illusory! they will not bear the test of a few simple calculations; and these our friends have not troubled themselves to institute.

With a simple flame of spirits of wine, under a proper vessel containing boiling water, a small carriage of 200 to 300 pounds weight can be put into motion, or a weight of 80 to 100 pounds may be raised to a height of 20 feet. The same effects may be produced by dissolving zinc in dilute sulphuric acid in a certain apparatus. This is certainly an astonishing and highly interesting discovery; but the question to be determined is, which of the two processes is the least expensive?

In order to answer this question, and to judge correctly of the hopes entertained from this discovery, let me remind you of what chemists denominate "equivalents." These are certain unalterable ratios of effects which are proportionate to each other, and may therefore be expressed in numbers. Thus, if we require 8 pounds of oxygen to produce a certain effect, and we wish to employ chlorine for the same effect, we must employ neither more nor less than 35 1/2 pounds weight. In the same manner, 6 pounds weight of coal are equivalent to 32 pounds weight of zinc. The numbers representing chemical equivalents express very general ratios of effects, comprehending for all bodies all the actions they are capable of producing.

If zinc be combined in a certain manner with another metal, and submitted to the action of dilute sulphuric acid, it is dissolved in the form of an oxide; it is in fact burned at the expense of the oxygen contained in the fluid. A consequence of this action is the production of an electric current, which, if conducted through a wire, renders it magnetic. In thus effecting the solution of a pound weight, for example, of zinc, we obtain a definite amount of force adequate to raise a given weight one inch, and to keep it suspended; and the amount of weight it will be capable of suspending will be the greater the more rapidly the zinc is dissolved.

By alternately interrupting and renewing the contact of the zinc with the acid, and by very simple mechanical arrangements, we can give to the iron an upward and downward or a horizontal motion, thus producing the conditions essential to the motion of any machinery.


Familiar Letters on Chemistry - 5/21

Previous Page     Next Page

  1    2    3    4    5    6    7    8    9   10   20   21 

Schulers Books Home



 Games Menu

Home
Balls
Battleship
Buzzy
Dice Poker
Memory
Mine
Peg
Poker
Tetris
Tic Tac Toe

Google
 
Web schulers.com
 

Schulers Books Online

books - games - software - wallpaper - everything