Schulers Books Online

books - games - software - wallpaper - everything


Books Menu

Author Catalog
Title Catalog
Sectioned Catalog


- Familiar Letters on Chemistry - 6/21 -

This moving force is produced by the oxidation of the zinc; and, setting aside the name given to the force in this case, we know that it can be produced in another manner. If we burn the zinc under the boiler of a steam-engine, consequently in the oxygen of the air instead of the galvanic pile, we should produce steam, and by it a certain amount of force. If we should assume, (which, however, is not proved,) that the quantity of force is unequal in these cases,--that, for instance, we had obtained double or triple the amount in the galvanic pile, or that in this mode of generating force less loss is sustained,--we must still recollect the equivalents of zinc and coal, and make these elements of our calculation. According to the experiments of Despretz, 6 pounds weight of zinc, in combining with oxygen, develops no more heat than 1 pound of coal; consequently, under equal conditions, we can produce six times the amount of force with a pound of coal as with a pound of zinc. It is therefore obvious that it would be more advantageous to employ coal instead of zinc, even if the latter produced four times as much force in a galvanic pile, as an equal weight of coal by its combustion under a boiler. Indeed it is highly probable, that if we burn under the boiler of a steam-engine the quantity of coal required for smelting the zinc from its ores, we shall produce far more force than the whole of the zinc so obtained could originate in any form of apparatus whatever.

Heat, electricity, and magnetism, have a similar relation to each other as the chemical equivalents of coal, zinc, and oxygen. By a certain measure of electricity we produce a corresponding proportion of heat or of magnetic power; we obtain that electricity by chemical affinity, which in one shape produces heat, in another electricity or magnetism. A certain amount of affinity produces an equivalent of electricity in the same manner as, on the other hand, we decompose equivalents of chemical compounds by a definite measure of electricity. The magnetic force of the pile is therefore limited to the extent of the chemical affinity, and in the case before us is obtained by the combination of the zinc and sulphuric acid. In the combustion of coal, the heat results from, and is measured by, the affinity of the oxygen of the atmosphere for that substance.

It is true that with a very small expense of zinc, we can make an iron wire a magnet capable of sustaining a thousand pounds weight of iron; let us not allow ourselves to be misled by this. Such a magnet could not raise a single pound weight of iron two inches, and therefore could not impart motion. The magnet acts like a rock, which while at rest presses with a weight of a thousand pounds upon a basis; it is like an inclosed lake, without an outlet and without a fall. But it may be said, we have, by mechanical arrangements, given it an outlet and a fall. True; and this must be regarded as a great triumph of mechanics; and I believe it is susceptible of further improvements, by which greater force may be obtained. But with every conceivable advantage of mechanism, no one will dispute that one pound of coal, under the boiler of a steam-engine, will give motion to a mass several hundred times greater than a pound of zinc in the galvanic pile.

Our experience of the employment of electro-magnetism as a motory power is, however, too recent to enable us to foresee the ultimate results of contrivances to apply it; and, therefore, those who have devoted themselves to solve the problem of its application should not be discouraged, inasmuch as it would undoubtedly be a most important achievement to supersede the steam-engine, and thus escape the danger of railroads, even at double their expense.

Professor Weber of Gottingen has thrown out a suggestion, that if a contrivance could be devised to enable us to convert at will the wheels of the steam-carriage into magnets, we should be enabled to ascend and descend acclivities with great facility. This notion may ultimately be, to a certain extent, realised.

The employment of the galvanic pile as a motory power, however, must, like every other contrivance, depend upon the question of its relative economy: probably some time hence it may so far succeed as to be adopted in certain favourable localities; it may stand in the same relation to steam power as the manufacture of beet sugar bears to that of cane, or as the production of gas from oils and resins to that from mineral coal.

The history of beet-root sugar affords us an excellent illustration of the effect of prices upon commercial productions. This branch of industry seems at length, as to its processes, to be perfected. The most beautiful white sugar is now manufactured from the beet-root, in the place of the treacle-like sugar, having the taste of the root, which was first obtained; and instead of 3 or 4 per cent., the proportion obtained by Achard, double or even treble that amount is now produced. And notwithstanding the perfection of the manufacture, it is probable it will ere long be in most places entirely discontinued. In the years 1824 to 1827, the prices of agricultural produce were much lower than at present, while the price of sugar was the same. At that time one malter [1] of wheat was 10s., and one klafter [2] of wood 18s., and land was falling in price. Thus, food and fuel were cheap, and the demand for sugar unlimited; it was, therefore, advantageous to grow beet-root, and to dispose of the produce of land as sugar. All these circumstances are now different. A malter of wheat costs 18s.; a klafter of wood, 30s. to 36s. Wages have risen, but not in proportion, whilst the price of colonial sugar has fallen. Within the limits of the German commercial league, as, for instance, at Frankfort-on-the-Maine, a pound of the whitest and best loaf sugar is 7d.; the import duty is 31/d., or 30s. per cwt., leaving 31/d. as the price of the sugar. In the year 1827, then, one malter of wheat was equal to 40 lbs. weight of sugar, whilst at present that quantity of wheat is worth 70 lbs. of sugar. If indeed fuel were the same in price as formerly, and 70 lbs. of sugar could be obtained from the same quantity of the root as then yielded 40 lbs., it might still be advantageously produced; but the amount, if now obtained by the most approved methods of extraction, falls far short of this; and as fuel is double the price, and labour dearer, it follows that, at present, it is far more advantageous to cultivate wheat and to purchase sugar.

There are, however, other elements which must enter into our calculations; but these serve to confirm our conclusion that the manufacture of beet-root sugar as a commercial speculation must cease. The leaves and residue of the root, after the juice was expressed, were used as food for cattle, and their value naturally increased with the price of grain. By the process formerly pursued, 75 lbs. weight of juice were obtained from 100 lbs. of beet-root, and gave 5 lbs. of sugar. The method of Schutzenbach, which was eagerly adopted by the manufacturers, produced from the same quantity of root 8 lbs. of sugar; but it was attended with more expense to produce, and the loss of the residue as food for cattle. The increased expense in this process arises from the larger quantity of fuel required to evaporate the water; for instead of merely evaporating the juice, the dry residue is treated with water, and we require fuel sufficient to evaporate 106 lbs. of fluid instead of 75 lbs., and the residue is only fit for manure. The additional 3 lbs. of sugar are purchased at the expense of much fuel, and the loss of the residue as an article of food.

If the valley of the Rhine possessed mines of diamonds as rich as those of Golconda, Visiapoor, or the Brazils, they would probably not be worth the working: at those places the cost of extraction is 28s. to 30s. the carat. With us it amounts to three or four times as much--to more, in fact, than diamonds are worth in the market. The sand of the Rhine contains gold; and in the Grand Duchy of Baden many persons are occupied in gold-washing when wages are low; but as soon as they rise, this employment ceases. The manufacture of sugar from beet-root, in the like manner, twelve to fourteen years ago offered advantages which are now lost: instead, therefore, of maintaining it at a great sacrifice, it would be more reasonable, more in accordance with true natural economy, to cultivate other and more valuable productions, and with them purchase sugar. Not only would the state be the gainer, but every member of the community. This argument does not apply, perhaps, to France and Bohemia, where the prices of fuel and of colonial sugar are very different to those in Germany.

The manufacture of gas for lighting, from coal, resin, and oils, stands with us on the same barren ground.

The price of the materials from which gas is manufactured in England bears a direct proportion to the price of corn: there the cost of tallow and oil is twice as great as in Germany, but iron and coal are two-thirds cheaper; and even in England the manufacture of gas is only advantageous when the other products of the distillation of coal, the coke, &c., can be sold.

It would certainly be esteemed one of the greatest discoveries of the age if any one could succeed in condensing coal gas into a white, dry, solid, odourless substance, portable, and capable of being placed upon a candlestick, or burned in a lamp. Wax, tallow, and oil, are combustible gases in a solid or fluid form, which offer many advantages for lighting, not possessed by gas: they furnish, in well-constructed lamps, as much light, without requiring the expensive apparatus necessary for the combustion of gas, and they are generally more economical. In large towns, or such establishments as hotels, where coke is in demand, and where losses in stolen tallow or oil must be considered, together with the labour of snuffing candles and cleaning lamps, the higher price of gas is compensated. In places where gas can be manufactured from resin, oil of turpentine, and other cheap oils, as at Frankfort, this is advantageous so long as it is pursued on small scale only. If large towns were lighted in the same manner, the materials would rise in price: the whole amount at present produced would scarcely suffice for two such towns as Berlin and Munich. But no just calculation can be made from the present prices of turpentine, resin, &c., which are not produced upon any large scale.

[Footnote 1: Malter--a measure containing several bushels, but varying in different countries.]

[Footnote 2: Klafter--a cord, a stack, measuring six feet every way.]


My dear Sir,

Until very recently it was supposed that the physical qualities of bodies, i.e. hardness, colour, density, transparency, &c., and still more their chemical properties, must depend upon the nature of their elements, or upon their composition. It was tacitly received as a principle, that two bodies containing the same elements in the same

Familiar Letters on Chemistry - 6/21

Previous Page     Next Page

  1    2    3    4    5    6    7    8    9   10   11   20   21 

Schulers Books Home

 Games Menu

Dice Poker
Tic Tac Toe


Schulers Books Online

books - games - software - wallpaper - everything